期刊文献+
共找到121,330篇文章
< 1 2 250 >
每页显示 20 50 100
Cubature Kalman Fusion Filtering Under Amplify-and-Forward Relays With Randomly Varying Channel Parameters 被引量:1
1
作者 Jiaxing Li Zidong Wang +2 位作者 Jun Hu Hongli Dong Hongjian Liu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期356-368,共13页
In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili... In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine. 展开更多
关键词 Amplify-and-forward(AaF)relays covariance intersection fusion cubature kalman filtering multi-sensor systems uniform boundedness
在线阅读 下载PDF
An Online Exploratory Maximum Likelihood Estimation Approach to Adaptive Kalman Filtering
2
作者 Jiajun Cheng Haonan Chen +2 位作者 Zhirui Xue Yulong Huang Yonggang Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期228-254,共27页
Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when ... Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when both the process noise and measurement noise covariance matrices are relatively inaccurate. Maximum likelihood estimation(MLE) possesses the potential to achieve this goal, since its theoretical accuracy is guaranteed by asymptotic optimality and the convergence speed is fast due to weak dependence on accurate state estimation.Unfortunately, the maximum likelihood cost function is so intricate that the existing MLE methods can only simply ignore all historical measurement information to achieve online estimation,which cannot adequately realize the potential of MLE. In order to design online MLE-based AKFs with high estimation accuracy and fast convergence speed, an online exploratory MLE approach is proposed, based on which a mini-batch coordinate descent noise covariance matrix estimation framework is developed. In this framework, the maximum likelihood cost function is simplified for online estimation with fewer and simpler terms which are selected in a mini-batch and calculated with a backtracking method. This maximum likelihood cost function is sidestepped and solved by exploring possible estimated noise covariance matrices adaptively while the historical measurement information is adequately utilized. Furthermore, four specific algorithms are derived under this framework to meet different practical requirements in terms of convergence speed, estimation accuracy,and calculation load. Abundant simulations and experiments are carried out to verify the validity and superiority of the proposed algorithms as compared with existing state-of-the-art AKFs. 展开更多
关键词 Adaptive kalman filtering coordinate descent maximum likelihood estimation mini-batch optimization unknown noise covariance matrix
在线阅读 下载PDF
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
3
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
考虑键相丢失的二重逐点Vold-Kalman滤波涡轮泵故障诊断 被引量:1
4
作者 王帅 孙若斌 +2 位作者 翟智 马猛 陈雪峰 《振动与冲击》 北大核心 2025年第3期210-220,229,共12页
液体火箭发动机涡轮泵在高转速、高温度梯度、高压的非平稳工况下极易发生故障。Vold-Kalman滤波方法能够从复杂时变振动信号中检测出涡轮泵转子故障,但由于涡轮泵振动传递路径复杂,该方法依赖于所采集振动信号的载波的高采样率高精度... 液体火箭发动机涡轮泵在高转速、高温度梯度、高压的非平稳工况下极易发生故障。Vold-Kalman滤波方法能够从复杂时变振动信号中检测出涡轮泵转子故障,但由于涡轮泵振动传递路径复杂,该方法依赖于所采集振动信号的载波的高采样率高精度的相位信息,在键相信号丢失和采样频率低(一圈一个脉冲)的实际应用场景下存在故障检测精度偏低的问题;且Vold-Kalman滤波使用批量式优化的方法,求解缓慢,无法在箭载计算机上实现在线检测故障。针对上述两个问题,为实现毫秒级的涡轮泵故障实时诊断,提出了一种滤波诊断方法——二重逐点Vold-Kalman滤波器(double point-wise Vold-Kalman filter,DPVKF)。DPVKF首先建立各阶次分量状态转移和状态观测的时变线性高斯模型;然后,从低精度的转速脉冲和振动信号中准确重构相应载波的高精度瞬变相位;随后,在重构相位的指导下,得到各阶次复包络的最优线性无偏估计;最终,在复杂激励干扰下提取到涡轮泵转子的故障特征。故障模拟试验和某型号涡轮泵低温轴承运转试验表明,提出的方法可实现高实时性、高可靠性的涡轮泵转子故障诊断。 展开更多
关键词 二重逐点Vold-kalman滤波(DPVKF) 键相信号丢失 涡轮泵 故障诊断
在线阅读 下载PDF
融合改进的Camshift与Kalman滤波的复杂环境下隔震支座位移测量研究
5
作者 杜永峰 熊小桥 +2 位作者 范宁 韩博 李虎 《地震工程学报》 北大核心 2025年第4期767-780,共14页
为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得... 为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得到的颜色信息的权重,生成融合信息直方图,从而增强算法在目标跟踪时的稳定性。当目标未被遮挡时,直接使用改进的Camshift算法来获取目标位置;当目标发生遮挡时,通过目标被遮挡面积判断遮挡程度,引入Kalman增益来预测目标位置,将预测和观测结果融合后得到目标新的位置状态估计。随后,通过坐标转换获取真实位移信息。该方法准确性通过三层钢框架结构模型的振动台试验得以验证,结果表明,采用视觉方法测量与拉线式位移计测量的结果所得最大位移误差均小于6.84%,两者相关性也均在0.91之上。最后,将该视觉方法应用到某实际工程中,通过对比一个监测点视觉位移测量与拉线式位移计的数据,发现二者误差值仅为0.15 mm,精度达到了98.56%,进一步表明该方法能够适应光照变化、灰尘和遮挡等复杂的隔震层环境,具有良好的准确性和鲁棒性。 展开更多
关键词 隔震支座位移 CAMSHIFT算法 kalman滤波 复杂环境
在线阅读 下载PDF
Kalman滤波跟踪方法的等效环路带宽
6
作者 李晔 石金晶 《全球定位系统》 2025年第3期113-118,共6页
数字锁相环(digital phase-locked loop,DPLL)是目前最为常用的载波跟踪技术,为了进一步提升载波跟踪性能,基于Kalman滤波的跟踪方法得到了广泛的研究.然而,Kalman滤波跟踪方法和DPLL具有截然不同的设计参数,导致难以直接进行算法性能... 数字锁相环(digital phase-locked loop,DPLL)是目前最为常用的载波跟踪技术,为了进一步提升载波跟踪性能,基于Kalman滤波的跟踪方法得到了广泛的研究.然而,Kalman滤波跟踪方法和DPLL具有截然不同的设计参数,导致难以直接进行算法性能的比较.针对该问题,本文通过简化新息和本地载波频率的处理,建立了Kalman滤波跟踪误差反馈模型与DPLL之间的联系,并在此基础上推导了前者等效环路带宽的解析表达式.该结论可用于指导Kalman滤波跟踪方法的参数设计,并准确地比较两类跟踪算法的性能. 展开更多
关键词 载波跟踪 数字锁相环(DPLL) kalman滤波 卫星导航 等效环路带宽
在线阅读 下载PDF
Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles 被引量:1
7
作者 Othman S.Al-Heety Zahriladha Zakaria +4 位作者 Ahmed Abu-Khadrah Mahamod Ismail Sarmad Nozad Mahmood Mohammed Mudhafar Shakir Hussein Alsariera 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2103-2127,共25页
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled... Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system. 展开更多
关键词 Q-LEARNING intelligent transportation system(ITS) traffic control vehicular communication kalman filtering smart city Internet of Things
在线阅读 下载PDF
WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm 被引量:1
8
作者 Duo Peng Kun Xie Mingshuo Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期28-40,共13页
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte... A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively. 展开更多
关键词 wireless sensor network(WSN)target tracking snake optimization algorithm extended kalman filter maneuvering target
在线阅读 下载PDF
基于径向基Koopman-Kalman的光学电流传感器误差预测 被引量:1
9
作者 曹睿康 李岩松 +2 位作者 耿聪 刘逸伦 刘君 《电子测量与仪器学报》 北大核心 2025年第5期84-94,共11页
光学电流传感器(OCS)对温度的变化非常敏感,温度的变化导致其测量产生误差,难以达到电力系统计量的要求,因此准确预测由温度变化引起的OCS测量误差对监测其运行稳定性和保证电力系统的安全运行具有重要意义。由于OCS输出电流受温度的影... 光学电流传感器(OCS)对温度的变化非常敏感,温度的变化导致其测量产生误差,难以达到电力系统计量的要求,因此准确预测由温度变化引起的OCS测量误差对监测其运行稳定性和保证电力系统的安全运行具有重要意义。由于OCS输出电流受温度的影响具有强非线性,提出了一种适用于非线性动力系统的径向基Koopman-Kalman预测算法,解决了温度影响下OCS输出电流因强非线性而难以预测的问题。首先通过径向基函数将非线性的OCS输出电流状态量映射至高维空间形成扩展状态,采用扩展动态模态分解算法分解扩展状态计算高维空间中Koopman算子的近似矩阵。其次,采用近似的Koopman算子在高维线性空间中进行批量预测。最后,采用Kalman滤波对批量预测的最后一个预测值更新校正,以跟随系统的状态变化。以实验测量得到的OCS温度-电流数据进行实验,结果表明在不同温度变化情况下,相较于标准Koopman预测和长短期记忆(LSTM)预测,所提出预测算法的均方误差(MSE)均减小90%以上,证明了所提算法的有效性。 展开更多
关键词 光学电流传感器 径向基函数 Koopman算子 卡尔曼滤波 实时预测
原文传递
基于单轴车响应与改进Kalman滤波算法的桥面平整度识别
10
作者 李智 杨永斌 +4 位作者 王志鲁 刘珍 毛华健 唐钰昇 姚华 《振动与冲击》 北大核心 2025年第16期239-252,共14页
桥面平整度是车-桥耦合(vehicle-bridge interaction,VBI)的重要影响因素,其精准识别对基于移动车辆响应的桥梁动力参数识别与结构安全诊断至关重要。为此,提出了一种基于单轴车响应的桥面平整度识别新方法。相比以往基于车辆响应类方法... 桥面平整度是车-桥耦合(vehicle-bridge interaction,VBI)的重要影响因素,其精准识别对基于移动车辆响应的桥梁动力参数识别与结构安全诊断至关重要。为此,提出了一种基于单轴车响应的桥面平整度识别新方法。相比以往基于车辆响应类方法,该方法仅需在单轴车上安装单个加速度计。所提方法的核心步骤为:首先,建立以桥面平整度为未知激励的VBI系统状态空间模型;然后,对实测或数值模拟得到的VBI系统响应进行组合和扩展,重构改进的VBI系统状态空间模型;最后,利用Kalman滤波算法从VBI系统中识别车辆状态和桥面平整度。研究结果表明,该方法具有良好的抗噪性,且对不同等级桥面以及公路路面的平整度识别均具有较高的精度。此外,建议低速测试,保证测试数据量充足且稳定。 展开更多
关键词 桥梁工程 桥面平整度 kalman滤波 单轴测量车 间接测量法 快速检测
在线阅读 下载PDF
一种基于Kalman滤波的房租预测方法
11
作者 李俊楠 夏怡凡 +1 位作者 张红历 郭佳豪 《四川大学学报(自然科学版)》 北大核心 2025年第6期1341-1346,共6页
对于住房租金(房租)预测问题,本文基于状态空间方程提出了一种融合卡尔曼滤波的预测方法,通过将城市片区细化为区域“颗粒”来提高区域房租预测精度,然后利用信息融合方法对各区域房租预测价格进行融合,最终得到预测房租价格.实证分析表... 对于住房租金(房租)预测问题,本文基于状态空间方程提出了一种融合卡尔曼滤波的预测方法,通过将城市片区细化为区域“颗粒”来提高区域房租预测精度,然后利用信息融合方法对各区域房租预测价格进行融合,最终得到预测房租价格.实证分析表明,该方法能够有效预测城市房租价格变化趋势,为住房租赁市场管理提供精准依据. 展开更多
关键词 房屋租金 kalman滤波 状态空间方程 信息融合
在线阅读 下载PDF
基于Bi-LSTM和Kalman的光伏发电功率超短期预测 被引量:1
12
作者 常泽煜 田亮 《中国测试》 北大核心 2025年第5期141-147,共7页
光伏发电功率超短期预测为电网调度煤电、储能等其他可调电源提供支持。针对气象因素随机性和光伏电池阵列积灰、老化导致光伏发电功率预测精度不高的问题,提出双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)和卡... 光伏发电功率超短期预测为电网调度煤电、储能等其他可调电源提供支持。针对气象因素随机性和光伏电池阵列积灰、老化导致光伏发电功率预测精度不高的问题,提出双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)和卡尔曼滤波器(Kalman filter)结合的混合预测方法。Bi-LSTM模型学习气象因素特征,结合天气预报数据可减小气象因素造成的随机性误差;Kalman可以减小光伏电池阵列积灰、老化等因素带来的累积性误差。实例验证表明:长期运行条件下混合模型比单一Kalman、Bi-LSTM模型预测精度分别提高3.78%、2.50%。 展开更多
关键词 光伏发电 功率 超短期预测 双向长短期记忆网络 卡尔曼滤波器
在线阅读 下载PDF
融合Kalman滤波的双注意力LSTM剩余使用寿命预测网络
13
作者 王宏 郭志涛 +1 位作者 张森 刘佳乐 《现代电子技术》 北大核心 2025年第22期160-166,共7页
剩余使用寿命(RUL)的准确预测对确保系统的安全性至关重要。针对发动机原始数据中隐含的多样化退化特征难以捕捉,以及数据中存在大量的噪声干扰,从而影响RUL预测精度的问题,提出一种融合Kalman滤波的双注意力LSTM剩余使用寿命预测网络... 剩余使用寿命(RUL)的准确预测对确保系统的安全性至关重要。针对发动机原始数据中隐含的多样化退化特征难以捕捉,以及数据中存在大量的噪声干扰,从而影响RUL预测精度的问题,提出一种融合Kalman滤波的双注意力LSTM剩余使用寿命预测网络。利用Kalman滤波去除噪声干扰并捕获数据的变化趋势,将其作为下一阶段的输入;再采用编码器-编码特征提取-解码器结构将自注意力机制、高效通道注意力模块与LSTM融合。在编码时,利用LSTM初步提取数据的时间特征,随后通过自注意力机制与高效通道注意力模块,分别在不同尺度下进一步提取数据的时间和空间特征;提取的特征经多尺度特征融合后,输入解码器进行解码,从而获得RUL预测值。在C-MAPSS数据集上进行大量实验,以验证模型的有效性。结果表明,相比于目前其他先进模型,所提出的预测网络在预测精度方面具有显著优势。 展开更多
关键词 剩余使用寿命预测 kalman滤波 自注意力机制 LSTM ECA机制 特征提取 多尺度融合
在线阅读 下载PDF
Idle speed control of proton exchange membrane fuel cell system via extended Kalman filter observer
14
作者 ZHAO Hong-hui DING Tian-wei +4 位作者 WANG Yi-lin HUANG Xing DU Jing HAO Zhi-qiang MIN Hai-tao 《控制理论与应用》 北大核心 2025年第8期1615-1624,共10页
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is... When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics. 展开更多
关键词 proton exchange membrane fuel cell idle speed control zero power output output power nonlinear model extended kalman filter observer
在线阅读 下载PDF
Kalman filtering for linear singular systems subject to round-robin protocol
15
作者 Ashna Goel Shovan Bhaumik Nutan Kumar Tomar 《Control Theory and Technology》 EI CSCD 2024年第4期543-551,共9页
This paper introduces a Kalman-type recursive state estimator for a class of discrete-time stochastic linear singular systems where the measurements are carried part by part periodically following a scheduling algorit... This paper introduces a Kalman-type recursive state estimator for a class of discrete-time stochastic linear singular systems where the measurements are carried part by part periodically following a scheduling algorithm.We consider that the system is in a network with limited allotted bandwidth,which refers to a situation where the total available bandwidth for data transmission through the network is limited.This limitation can occur for various reasons,such as network congestion,resource allocation policies,or bandwidth limitations imposed by network administrators.In such networks,the entire measurement vector cannot be transmitted to the estimator instantly.Thus,managing a network with a limited allotted bandwidth requires careful planning,monitoring,and implementing some scheduling strategies to optimize the use of measured data while estimating the system states.We show that a scheduling method,namely,round-robin protocol,is suitable for singular systems to deal with such a scenario.The upper bound of the prior error covariance is studied via a periodic Riccati equation(PRE).To retain the boundedness of prior error covariance,the stability of the PRE is examined by the observability properties of the round-robin-induced system.Finally,a simulation example is presented to show the effectiveness of the designed filtering scheme. 展开更多
关键词 Networked control systems Communication constraints Round-robin protocol Singular systems filtering
原文传递
序贯无迹Kalman滤波器
16
作者 张雪楠 郑佰富 +2 位作者 张润恒 刘志伟 高媛 《黑龙江大学工程学报(中英俄文)》 2025年第1期37-45,共9页
针对多传感器非线性系统中量测数据不能同时刻到达融合中心的情况,研究在无迹Kalman滤波(Unscented Kalman filtering,UKF)算法的基础上,按照量测数据到达的先后顺序进行序贯融合,提出了序贯无迹Kalman滤波(Sequential unscented Kalman... 针对多传感器非线性系统中量测数据不能同时刻到达融合中心的情况,研究在无迹Kalman滤波(Unscented Kalman filtering,UKF)算法的基础上,按照量测数据到达的先后顺序进行序贯融合,提出了序贯无迹Kalman滤波(Sequential unscented Kalman filter,SUKF)算法。各个子系统通过无迹Kalman滤波器得到局部滤波估计,按照局部滤波结果到达融合中心的顺序,分别利用序贯协方差交叉融合(Sequential covariance intersection,SCI)算法和序贯逆协方差交叉融合(Sequential inverse covariance intersection,SICI)算法对各个子系统局部估计进行融合,避免了互协方差的计算,降低了计算负担。通过与集中式观测融合(Centralized observation fusion,CF)算法以及局部滤波器的精度对比分析,给出了3种融合算法的估计精度分析。用目标跟踪非线性系统仿真算例,验证了所提出的序贯滤波算法的有效性。 展开更多
关键词 无迹kalman滤波 序贯融合 序贯滤波 协方差交叉 逆协方差交叉
在线阅读 下载PDF
基于扩展Kalman滤波算法的半球谐振子特征参数辨识方法
17
作者 高心想 王晨晟 +1 位作者 张熙 邹康 《光学与光电技术》 2025年第1期79-85,共7页
针对如何有效辨识半球谐振子特征参数的问题,提出了一种基于扩展Kalman滤波算法的辨识方法,来辨识谐振子四个特征参数:刚度各向异性Δ_(ω)、刚度失准角θ_(ω)、阻尼各向异性Δ(1/τ)和阻尼失准角θ_(τ)。根据非理想半球谐振子的幅值... 针对如何有效辨识半球谐振子特征参数的问题,提出了一种基于扩展Kalman滤波算法的辨识方法,来辨识谐振子四个特征参数:刚度各向异性Δ_(ω)、刚度失准角θ_(ω)、阻尼各向异性Δ(1/τ)和阻尼失准角θ_(τ)。根据非理想半球谐振子的幅值控制方程和正交控制方程,构建了基于扩展Kalman滤波算法的参数辨识方程,并搭建了半球谐振陀螺仿真模型,从而验证了提出方法的有效性。仿真结果表明,所有特征参数均在15 s内收敛至设定的期望值。所提出的方法能够有效辨识出半球谐振子的特征参数,可为半球谐振陀螺的误差校准、补偿以及系统精度提升提供有利指导。 展开更多
关键词 谐振陀螺 半球谐振子 特征参数 扩展kalman滤波 半球谐振陀螺
原文传递
基于Vold-Kalman滤波的机动飞行下转子支承系统振动特性实验研究 被引量:1
18
作者 范翔南 陈曦 +2 位作者 张博 杨德志 任光明 《推进技术》 北大核心 2025年第3期227-241,共15页
机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波... 机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。 展开更多
关键词 Vold-kalman滤波 相对带宽 机动飞行 转子支承系统 振动特性试验
原文传递
Multi-information fusion algorithm for temperature prediction based on MP-Huber Kalman filter
19
作者 XU Wanjin LI Jiying LU Yandong 《Journal of Measurement Science and Instrumentation》 2025年第2期236-244,共9页
In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on opti... In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on optimized P-Huber weight function was proposed.The algorithm took Kalman filter(KF)as the whole frame,and established the decision threshold based on the confidence level of Chi-square distribution.At the same time,the abnormal error judgment value was constructed by Mahalanobis distance function,and the three segments of Huber weight function were formed.It could improve the accuracy of the interval judgment of outliers,and give a reasonable weight,so as to improve the tracking accuracy of the algorithm.The data values of four important locations in the vehicle obtained after optimized filtering were processed by information fusion.According to theoretical analysis,compared with Kalman filtering algorithm,the proposed algorithm could accurately track the actual temperature in the case of abnormal error,and multi-station data fusion processing could improve the overall fault tolerance of the system.The results showed that the proposed algorithm effectively reduced the interference of abnormal errors on filtering,and the synthetic value of fusion processing was more stable and critical. 展开更多
关键词 Huber weight function Mahalanobis distance kalman filter mulit-information fusion temperature prediction
在线阅读 下载PDF
A Structural Dynamic Response Reconstruction Method for Continuous System Based on Kalman Filter
20
作者 LI Hongqiu JIANG Jinhui MOHAMED M Shadi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期250-260,共11页
The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diag... The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diagnosis,and related fields.This paper proposes a dynamic response reconstruction method based on the Kalman filter,which simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions.The weighted least squares method determines the load weighting matrix for excitation identification,while the minimum variance unbiased estimation determines the Kalman filter gain.The excitation prediction Kalman filter is constructed through time,excitation,and measurement updates.Subsequently,the response at the target point is reconstructed using the state vector,observation matrix,and excitation influence matrix obtained through the excitation prediction Kalman filter algorithm.An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman filtering algorithm in modal space is derived.The proposed structural dynamic response reconstruction method evaluates the response reconstruction and the load identification performance under various load types and errors through simulation examples.Results demonstrate the accurate excitation identification under different load conditions and simultaneous reconstruction of target point responses,verifying the feasibility and reliability of the proposed method. 展开更多
关键词 dynamic load identification structural response reconstruction excitation identification kalman filter continuous system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部