When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
This paper presents a manifold-optimized Error-State Kalman Filter(ESKF)framework for unmanned aerial vehicle(UAV)pose estimation,integrating Inertial Measurement Unit(IMU)data with GPS or LiDAR to enhance estimation ...This paper presents a manifold-optimized Error-State Kalman Filter(ESKF)framework for unmanned aerial vehicle(UAV)pose estimation,integrating Inertial Measurement Unit(IMU)data with GPS or LiDAR to enhance estimation accuracy and robustness.We employ a manifold-based optimization approach,leveraging exponential and logarithmic mappings to transform rotation vectors into rotation matrices.The proposed ESKF framework ensures state variables remain near the origin,effectively mitigating singularity issues and enhancing numerical stability.Additionally,due to the small magnitude of state variables,second-order terms can be neglected,simplifying Jacobian matrix computation and improving computational efficiency.Furthermore,we introduce a novel Kalman filter gain computation strategy that dynamically adapts to low-dimensional and high-dimensional observation equations,enabling efficient processing across different sensor modalities.Specifically,for resource-constrained UAV platforms,this method significantly reduces computational cost,making it highly suitable for real-time UAV applications.展开更多
The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diag...The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diagnosis,and related fields.This paper proposes a dynamic response reconstruction method based on the Kalman filter,which simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions.The weighted least squares method determines the load weighting matrix for excitation identification,while the minimum variance unbiased estimation determines the Kalman filter gain.The excitation prediction Kalman filter is constructed through time,excitation,and measurement updates.Subsequently,the response at the target point is reconstructed using the state vector,observation matrix,and excitation influence matrix obtained through the excitation prediction Kalman filter algorithm.An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman filtering algorithm in modal space is derived.The proposed structural dynamic response reconstruction method evaluates the response reconstruction and the load identification performance under various load types and errors through simulation examples.Results demonstrate the accurate excitation identification under different load conditions and simultaneous reconstruction of target point responses,verifying the feasibility and reliability of the proposed method.展开更多
In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on opti...In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on optimized P-Huber weight function was proposed.The algorithm took Kalman filter(KF)as the whole frame,and established the decision threshold based on the confidence level of Chi-square distribution.At the same time,the abnormal error judgment value was constructed by Mahalanobis distance function,and the three segments of Huber weight function were formed.It could improve the accuracy of the interval judgment of outliers,and give a reasonable weight,so as to improve the tracking accuracy of the algorithm.The data values of four important locations in the vehicle obtained after optimized filtering were processed by information fusion.According to theoretical analysis,compared with Kalman filtering algorithm,the proposed algorithm could accurately track the actual temperature in the case of abnormal error,and multi-station data fusion processing could improve the overall fault tolerance of the system.The results showed that the proposed algorithm effectively reduced the interference of abnormal errors on filtering,and the synthetic value of fusion processing was more stable and critical.展开更多
Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when ...Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when both the process noise and measurement noise covariance matrices are relatively inaccurate. Maximum likelihood estimation(MLE) possesses the potential to achieve this goal, since its theoretical accuracy is guaranteed by asymptotic optimality and the convergence speed is fast due to weak dependence on accurate state estimation.Unfortunately, the maximum likelihood cost function is so intricate that the existing MLE methods can only simply ignore all historical measurement information to achieve online estimation,which cannot adequately realize the potential of MLE. In order to design online MLE-based AKFs with high estimation accuracy and fast convergence speed, an online exploratory MLE approach is proposed, based on which a mini-batch coordinate descent noise covariance matrix estimation framework is developed. In this framework, the maximum likelihood cost function is simplified for online estimation with fewer and simpler terms which are selected in a mini-batch and calculated with a backtracking method. This maximum likelihood cost function is sidestepped and solved by exploring possible estimated noise covariance matrices adaptively while the historical measurement information is adequately utilized. Furthermore, four specific algorithms are derived under this framework to meet different practical requirements in terms of convergence speed, estimation accuracy,and calculation load. Abundant simulations and experiments are carried out to verify the validity and superiority of the proposed algorithms as compared with existing state-of-the-art AKFs.展开更多
The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with ...The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.展开更多
Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displace...Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displacements,ambient noise interference,and limitations in displacement meter installation.In this paper,a novel method that integrates the Kanade-Lucas-Tomasi(KLT)feature tracker with an extended Kalman filter(EKF)is presented for measuring rail displacement during shaking table tests.The method employs KLT feature tracker and a random sample consensus algorithm to extract and track key feature points,while EKF optimally estimates dynamic states by accounting for system noise and observation errors.Shaking table test results demonstrate that the proposed method achieves an acceleration root mean square error of 0.300 m/s^(2)and a correlation with accelerometer data exceeding 99.7%,significantly outper-forming the original KLT approach.This innovative method provides a more efficient and reliable solution for measuring rail displacement under large nonlinear vibrations.展开更多
The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance o...The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties,making it difficult to achieve optimal GNSS/INS integration.Dealing with non-Gaussian noise remains a significant challenge in filter development today.Therefore,the maximum correntropy criterion(MCC)is utilized in EKFs to manage heavytailed measurement noise.However,its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored.In this paper,we extend correntropy from using a single kernel to a multi-kernel approach.This leads to the development of a multi-kernel maximum correntropy extended Kalman filter(MKMC-EKF),which is designed to effectively manage multivariate non-Gaussian noise and disturbances.Further,theoretical analysis,including advanced stability proofs,can enhance understanding,while hybrid approaches integrating MKMC-EKF with particle filters may improve performance in nonlinear systems.The MKMC-EKF enhances estimation accuracy using a multi-kernel bandwidth approach.As bandwidth increases,the filter’s sensitivity to non-Gaussian features decreases,and its behavior progressively approximates that of the iterated EKF.The proposed approach for enhancing positioning in navigation is validated through performance evaluations,which demonstrate its practical applications in real-world systems like GPS navigation and measuring radar targets.展开更多
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi...The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.展开更多
Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers...Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance.展开更多
Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection metho...Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems.展开更多
To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-bas...To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-based nonlinear filtering methods,we design a new method for estimating noise statistical characteristics of nonlinear systems based on the credibility Kalman Filter(KF)theory considering noise correlation.This method first extends credibility to the Unscented Kalman Filter(UKF)and Extended Kalman Filter(EKF)based on the credibility theory.Further,an optimization model for nonlinear credibility under noise related conditions is established considering noise correlation.A combination of filtering smoothing and credibility iteration formula is used to improve the real-time performance of the nonlinear adaptive credibility KF algorithm,further expanding its application scenarios,and the derivation process of the formula theory is provided.Finally,the performance of the nonlinear credibility filtering algorithm is simulated and analyzed from multiple perspectives,and a comparative analysis conducted on specific experimental data.The simulation and experimental results show that the proposed credibility EKF and credibility UKF algorithms can estimate the noise covariance more accurately and effectively with lower average estimation time than traditional methods,indicating that the proposed algorithm has stable estimation performance and good real-time performance.展开更多
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice fo...This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been emplo...The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.展开更多
In this paper, the problem of time-varying aerodynamic parameters identification under measurement noises is studied. By analyzing the key aerodynamic parameters that affect the aircraft control system, a system model...In this paper, the problem of time-varying aerodynamic parameters identification under measurement noises is studied. By analyzing the key aerodynamic parameters that affect the aircraft control system, a system model with extended states for identifying equivalent aerodynamic parameters is established, and error parameters are extended to the system state, avoiding the difficulty caused by the unknown dynamic in the system. Furthermore, an identification algorithm based on extended state Kalman filter is designed, and it is proved that the algorithm has quasi-consistency, thus, the estimation error can be evaluated in real time. Finally, the simulation results under typical flight scenarios show that the designed algorithm can accurately identify aerodynamic parameters, and has desired convergence speed and convergence precision.展开更多
For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand....For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.展开更多
The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interfe...The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.展开更多
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
基金National Natural Science Foundation of China(Grant No.62266045)National Science and Technology Major Project of China(No.2022YFE0138600)。
文摘This paper presents a manifold-optimized Error-State Kalman Filter(ESKF)framework for unmanned aerial vehicle(UAV)pose estimation,integrating Inertial Measurement Unit(IMU)data with GPS or LiDAR to enhance estimation accuracy and robustness.We employ a manifold-based optimization approach,leveraging exponential and logarithmic mappings to transform rotation vectors into rotation matrices.The proposed ESKF framework ensures state variables remain near the origin,effectively mitigating singularity issues and enhancing numerical stability.Additionally,due to the small magnitude of state variables,second-order terms can be neglected,simplifying Jacobian matrix computation and improving computational efficiency.Furthermore,we introduce a novel Kalman filter gain computation strategy that dynamically adapts to low-dimensional and high-dimensional observation equations,enabling efficient processing across different sensor modalities.Specifically,for resource-constrained UAV platforms,this method significantly reduces computational cost,making it highly suitable for real-time UAV applications.
基金supported by the National Natural Science Foundation of China(Nos.12372066,U23B6009,52171261)the Aeronautical Science Fund(No.20240013052002)the Qing Lan Project。
文摘The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diagnosis,and related fields.This paper proposes a dynamic response reconstruction method based on the Kalman filter,which simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions.The weighted least squares method determines the load weighting matrix for excitation identification,while the minimum variance unbiased estimation determines the Kalman filter gain.The excitation prediction Kalman filter is constructed through time,excitation,and measurement updates.Subsequently,the response at the target point is reconstructed using the state vector,observation matrix,and excitation influence matrix obtained through the excitation prediction Kalman filter algorithm.An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman filtering algorithm in modal space is derived.The proposed structural dynamic response reconstruction method evaluates the response reconstruction and the load identification performance under various load types and errors through simulation examples.Results demonstrate the accurate excitation identification under different load conditions and simultaneous reconstruction of target point responses,verifying the feasibility and reliability of the proposed method.
基金supported by Natural Science Foundation of Gansu Province(No.20JR5RA407).
文摘In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on optimized P-Huber weight function was proposed.The algorithm took Kalman filter(KF)as the whole frame,and established the decision threshold based on the confidence level of Chi-square distribution.At the same time,the abnormal error judgment value was constructed by Mahalanobis distance function,and the three segments of Huber weight function were formed.It could improve the accuracy of the interval judgment of outliers,and give a reasonable weight,so as to improve the tracking accuracy of the algorithm.The data values of four important locations in the vehicle obtained after optimized filtering were processed by information fusion.According to theoretical analysis,compared with Kalman filtering algorithm,the proposed algorithm could accurately track the actual temperature in the case of abnormal error,and multi-station data fusion processing could improve the overall fault tolerance of the system.The results showed that the proposed algorithm effectively reduced the interference of abnormal errors on filtering,and the synthetic value of fusion processing was more stable and critical.
基金supported in part by the National Key Research and Development Program of China(2023YFB3906403)the National Natural Science Foundation of China(62373118,62173105)the Natural Science Foundation of Heilongjiang Province of China(ZD2023F002)
文摘Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when both the process noise and measurement noise covariance matrices are relatively inaccurate. Maximum likelihood estimation(MLE) possesses the potential to achieve this goal, since its theoretical accuracy is guaranteed by asymptotic optimality and the convergence speed is fast due to weak dependence on accurate state estimation.Unfortunately, the maximum likelihood cost function is so intricate that the existing MLE methods can only simply ignore all historical measurement information to achieve online estimation,which cannot adequately realize the potential of MLE. In order to design online MLE-based AKFs with high estimation accuracy and fast convergence speed, an online exploratory MLE approach is proposed, based on which a mini-batch coordinate descent noise covariance matrix estimation framework is developed. In this framework, the maximum likelihood cost function is simplified for online estimation with fewer and simpler terms which are selected in a mini-batch and calculated with a backtracking method. This maximum likelihood cost function is sidestepped and solved by exploring possible estimated noise covariance matrices adaptively while the historical measurement information is adequately utilized. Furthermore, four specific algorithms are derived under this framework to meet different practical requirements in terms of convergence speed, estimation accuracy,and calculation load. Abundant simulations and experiments are carried out to verify the validity and superiority of the proposed algorithms as compared with existing state-of-the-art AKFs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272123 and 12302047)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231185)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX24_0192).
文摘The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.
基金The National Key Research and Development Program of China(No.2021YFB2600600,2021YFB2600601)the National Natural Science Foundation of China(No.52408456)+2 种基金China Postdoctoral Science Foundation(No.2022M720533)College Students’Innovative Entrepreneurial Training Plan Program(No.202410710009)Key Research and Development Program of Shaanxi,China(No.2024SF-YBXM-659).
文摘Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displacements,ambient noise interference,and limitations in displacement meter installation.In this paper,a novel method that integrates the Kanade-Lucas-Tomasi(KLT)feature tracker with an extended Kalman filter(EKF)is presented for measuring rail displacement during shaking table tests.The method employs KLT feature tracker and a random sample consensus algorithm to extract and track key feature points,while EKF optimally estimates dynamic states by accounting for system noise and observation errors.Shaking table test results demonstrate that the proposed method achieves an acceleration root mean square error of 0.300 m/s^(2)and a correlation with accelerometer data exceeding 99.7%,significantly outper-forming the original KLT approach.This innovative method provides a more efficient and reliable solution for measuring rail displacement under large nonlinear vibrations.
基金the support from National Science and Technology Council,Taiwan under grant numbers NSTC 113-2811-E-019-001 and NSTC 113-2221-E-019-059.
文摘The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties,making it difficult to achieve optimal GNSS/INS integration.Dealing with non-Gaussian noise remains a significant challenge in filter development today.Therefore,the maximum correntropy criterion(MCC)is utilized in EKFs to manage heavytailed measurement noise.However,its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored.In this paper,we extend correntropy from using a single kernel to a multi-kernel approach.This leads to the development of a multi-kernel maximum correntropy extended Kalman filter(MKMC-EKF),which is designed to effectively manage multivariate non-Gaussian noise and disturbances.Further,theoretical analysis,including advanced stability proofs,can enhance understanding,while hybrid approaches integrating MKMC-EKF with particle filters may improve performance in nonlinear systems.The MKMC-EKF enhances estimation accuracy using a multi-kernel bandwidth approach.As bandwidth increases,the filter’s sensitivity to non-Gaussian features decreases,and its behavior progressively approximates that of the iterated EKF.The proposed approach for enhancing positioning in navigation is validated through performance evaluations,which demonstrate its practical applications in real-world systems like GPS navigation and measuring radar targets.
基金supported in part by Sichuan Science and Technology Program under Grant No.2025ZNSFSC151in part by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA27030201+1 种基金the Natural Science Foundation of China under Grant No.U21B6001in part by the Natural Science Foundation of Tianjin under Grant No.24JCQNJC01930.
文摘The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.
基金supported by the Foundation of Key Laboratory of Micro-inertial Instrument and Advanced Navigation Technology,Ministry of Education,Chinathe National Natural Science Foundation of China (61873064)
文摘Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance.
基金Supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(22KJB520012)the Research Project on Higher Education Reform in Jiangsu Province(2023JSJG781)the College Student Innovation and Entrepreneurship Training Program Project(202313571008Z)。
文摘Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems.
基金supported by the National Natural Science Foundation of China(No.62033010)the Qing Lan Project of Jiangsu Province,China(No.R2023Q07)the Aeronautical Science Foundation of China(No.2019460T5001).
文摘To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-based nonlinear filtering methods,we design a new method for estimating noise statistical characteristics of nonlinear systems based on the credibility Kalman Filter(KF)theory considering noise correlation.This method first extends credibility to the Unscented Kalman Filter(UKF)and Extended Kalman Filter(EKF)based on the credibility theory.Further,an optimization model for nonlinear credibility under noise related conditions is established considering noise correlation.A combination of filtering smoothing and credibility iteration formula is used to improve the real-time performance of the nonlinear adaptive credibility KF algorithm,further expanding its application scenarios,and the derivation process of the formula theory is provided.Finally,the performance of the nonlinear credibility filtering algorithm is simulated and analyzed from multiple perspectives,and a comparative analysis conducted on specific experimental data.The simulation and experimental results show that the proposed credibility EKF and credibility UKF algorithms can estimate the noise covariance more accurately and effectively with lower average estimation time than traditional methods,indicating that the proposed algorithm has stable estimation performance and good real-time performance.
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
文摘This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.
基金funded through the Researchers Supporting Project Number(RSPD2024R596),King Saud University,Riyadh,Saudi Arabia.
文摘The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.
基金supported by the National Natural Science Foundation of China(No.62122083)Youth Innovation Promotion Association,CAS.
文摘In this paper, the problem of time-varying aerodynamic parameters identification under measurement noises is studied. By analyzing the key aerodynamic parameters that affect the aircraft control system, a system model with extended states for identifying equivalent aerodynamic parameters is established, and error parameters are extended to the system state, avoiding the difficulty caused by the unknown dynamic in the system. Furthermore, an identification algorithm based on extended state Kalman filter is designed, and it is proved that the algorithm has quasi-consistency, thus, the estimation error can be evaluated in real time. Finally, the simulation results under typical flight scenarios show that the designed algorithm can accurately identify aerodynamic parameters, and has desired convergence speed and convergence precision.
基金funded by the project scheme of the Publication Writing-IPR Incentive Program(PPHKI)2022Directorate of Research and Community Service(DRPM)Institut Teknologi Sepuluh Nopember(ITS)Surabaya,Indonesia for the financial supports。
文摘For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.
基金supported by the Science and Technology Research Project of Henan Province (No.222102210087)the Science and Technology Research Project of Henan Province (No.222102220102).
文摘The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.