期刊文献+
共找到19,808篇文章
< 1 2 250 >
每页显示 20 50 100
考虑键相丢失的二重逐点Vold-Kalman滤波涡轮泵故障诊断 被引量:1
1
作者 王帅 孙若斌 +2 位作者 翟智 马猛 陈雪峰 《振动与冲击》 北大核心 2025年第3期210-220,229,共12页
液体火箭发动机涡轮泵在高转速、高温度梯度、高压的非平稳工况下极易发生故障。Vold-Kalman滤波方法能够从复杂时变振动信号中检测出涡轮泵转子故障,但由于涡轮泵振动传递路径复杂,该方法依赖于所采集振动信号的载波的高采样率高精度... 液体火箭发动机涡轮泵在高转速、高温度梯度、高压的非平稳工况下极易发生故障。Vold-Kalman滤波方法能够从复杂时变振动信号中检测出涡轮泵转子故障,但由于涡轮泵振动传递路径复杂,该方法依赖于所采集振动信号的载波的高采样率高精度的相位信息,在键相信号丢失和采样频率低(一圈一个脉冲)的实际应用场景下存在故障检测精度偏低的问题;且Vold-Kalman滤波使用批量式优化的方法,求解缓慢,无法在箭载计算机上实现在线检测故障。针对上述两个问题,为实现毫秒级的涡轮泵故障实时诊断,提出了一种滤波诊断方法——二重逐点Vold-Kalman滤波器(double point-wise Vold-Kalman filter,DPVKF)。DPVKF首先建立各阶次分量状态转移和状态观测的时变线性高斯模型;然后,从低精度的转速脉冲和振动信号中准确重构相应载波的高精度瞬变相位;随后,在重构相位的指导下,得到各阶次复包络的最优线性无偏估计;最终,在复杂激励干扰下提取到涡轮泵转子的故障特征。故障模拟试验和某型号涡轮泵低温轴承运转试验表明,提出的方法可实现高实时性、高可靠性的涡轮泵转子故障诊断。 展开更多
关键词 二重逐点Vold-kalman滤波(DPVKF) 键相信号丢失 涡轮泵 故障诊断
在线阅读 下载PDF
融合改进的Camshift与Kalman滤波的复杂环境下隔震支座位移测量研究
2
作者 杜永峰 熊小桥 +2 位作者 范宁 韩博 李虎 《地震工程学报》 北大核心 2025年第4期767-780,共14页
为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得... 为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得到的颜色信息的权重,生成融合信息直方图,从而增强算法在目标跟踪时的稳定性。当目标未被遮挡时,直接使用改进的Camshift算法来获取目标位置;当目标发生遮挡时,通过目标被遮挡面积判断遮挡程度,引入Kalman增益来预测目标位置,将预测和观测结果融合后得到目标新的位置状态估计。随后,通过坐标转换获取真实位移信息。该方法准确性通过三层钢框架结构模型的振动台试验得以验证,结果表明,采用视觉方法测量与拉线式位移计测量的结果所得最大位移误差均小于6.84%,两者相关性也均在0.91之上。最后,将该视觉方法应用到某实际工程中,通过对比一个监测点视觉位移测量与拉线式位移计的数据,发现二者误差值仅为0.15 mm,精度达到了98.56%,进一步表明该方法能够适应光照变化、灰尘和遮挡等复杂的隔震层环境,具有良好的准确性和鲁棒性。 展开更多
关键词 隔震支座位移 CAMSHIFT算法 kalman滤波 复杂环境
在线阅读 下载PDF
Kalman滤波跟踪方法的等效环路带宽
3
作者 李晔 石金晶 《全球定位系统》 2025年第3期113-118,共6页
数字锁相环(digital phase-locked loop,DPLL)是目前最为常用的载波跟踪技术,为了进一步提升载波跟踪性能,基于Kalman滤波的跟踪方法得到了广泛的研究.然而,Kalman滤波跟踪方法和DPLL具有截然不同的设计参数,导致难以直接进行算法性能... 数字锁相环(digital phase-locked loop,DPLL)是目前最为常用的载波跟踪技术,为了进一步提升载波跟踪性能,基于Kalman滤波的跟踪方法得到了广泛的研究.然而,Kalman滤波跟踪方法和DPLL具有截然不同的设计参数,导致难以直接进行算法性能的比较.针对该问题,本文通过简化新息和本地载波频率的处理,建立了Kalman滤波跟踪误差反馈模型与DPLL之间的联系,并在此基础上推导了前者等效环路带宽的解析表达式.该结论可用于指导Kalman滤波跟踪方法的参数设计,并准确地比较两类跟踪算法的性能. 展开更多
关键词 载波跟踪 数字锁相环(DPLL) kalman滤波 卫星导航 等效环路带宽
在线阅读 下载PDF
基于单轴车响应与改进Kalman滤波算法的桥面平整度识别
4
作者 李智 杨永斌 +4 位作者 王志鲁 刘珍 毛华健 唐钰昇 姚华 《振动与冲击》 北大核心 2025年第16期239-252,共14页
桥面平整度是车-桥耦合(vehicle-bridge interaction,VBI)的重要影响因素,其精准识别对基于移动车辆响应的桥梁动力参数识别与结构安全诊断至关重要。为此,提出了一种基于单轴车响应的桥面平整度识别新方法。相比以往基于车辆响应类方法... 桥面平整度是车-桥耦合(vehicle-bridge interaction,VBI)的重要影响因素,其精准识别对基于移动车辆响应的桥梁动力参数识别与结构安全诊断至关重要。为此,提出了一种基于单轴车响应的桥面平整度识别新方法。相比以往基于车辆响应类方法,该方法仅需在单轴车上安装单个加速度计。所提方法的核心步骤为:首先,建立以桥面平整度为未知激励的VBI系统状态空间模型;然后,对实测或数值模拟得到的VBI系统响应进行组合和扩展,重构改进的VBI系统状态空间模型;最后,利用Kalman滤波算法从VBI系统中识别车辆状态和桥面平整度。研究结果表明,该方法具有良好的抗噪性,且对不同等级桥面以及公路路面的平整度识别均具有较高的精度。此外,建议低速测试,保证测试数据量充足且稳定。 展开更多
关键词 桥梁工程 桥面平整度 kalman滤波 单轴测量车 间接测量法 快速检测
在线阅读 下载PDF
融合Kalman滤波的双注意力LSTM剩余使用寿命预测网络
5
作者 王宏 郭志涛 +1 位作者 张森 刘佳乐 《现代电子技术》 北大核心 2025年第22期160-166,共7页
剩余使用寿命(RUL)的准确预测对确保系统的安全性至关重要。针对发动机原始数据中隐含的多样化退化特征难以捕捉,以及数据中存在大量的噪声干扰,从而影响RUL预测精度的问题,提出一种融合Kalman滤波的双注意力LSTM剩余使用寿命预测网络... 剩余使用寿命(RUL)的准确预测对确保系统的安全性至关重要。针对发动机原始数据中隐含的多样化退化特征难以捕捉,以及数据中存在大量的噪声干扰,从而影响RUL预测精度的问题,提出一种融合Kalman滤波的双注意力LSTM剩余使用寿命预测网络。利用Kalman滤波去除噪声干扰并捕获数据的变化趋势,将其作为下一阶段的输入;再采用编码器-编码特征提取-解码器结构将自注意力机制、高效通道注意力模块与LSTM融合。在编码时,利用LSTM初步提取数据的时间特征,随后通过自注意力机制与高效通道注意力模块,分别在不同尺度下进一步提取数据的时间和空间特征;提取的特征经多尺度特征融合后,输入解码器进行解码,从而获得RUL预测值。在C-MAPSS数据集上进行大量实验,以验证模型的有效性。结果表明,相比于目前其他先进模型,所提出的预测网络在预测精度方面具有显著优势。 展开更多
关键词 剩余使用寿命预测 kalman滤波 自注意力机制 LSTM ECA机制 特征提取 多尺度融合
在线阅读 下载PDF
基于扩展Kalman滤波算法的半球谐振子特征参数辨识方法
6
作者 高心想 王晨晟 +1 位作者 张熙 邹康 《光学与光电技术》 2025年第1期79-85,共7页
针对如何有效辨识半球谐振子特征参数的问题,提出了一种基于扩展Kalman滤波算法的辨识方法,来辨识谐振子四个特征参数:刚度各向异性Δ_(ω)、刚度失准角θ_(ω)、阻尼各向异性Δ(1/τ)和阻尼失准角θ_(τ)。根据非理想半球谐振子的幅值... 针对如何有效辨识半球谐振子特征参数的问题,提出了一种基于扩展Kalman滤波算法的辨识方法,来辨识谐振子四个特征参数:刚度各向异性Δ_(ω)、刚度失准角θ_(ω)、阻尼各向异性Δ(1/τ)和阻尼失准角θ_(τ)。根据非理想半球谐振子的幅值控制方程和正交控制方程,构建了基于扩展Kalman滤波算法的参数辨识方程,并搭建了半球谐振陀螺仿真模型,从而验证了提出方法的有效性。仿真结果表明,所有特征参数均在15 s内收敛至设定的期望值。所提出的方法能够有效辨识出半球谐振子的特征参数,可为半球谐振陀螺的误差校准、补偿以及系统精度提升提供有利指导。 展开更多
关键词 谐振陀螺 半球谐振子 特征参数 扩展kalman滤波 半球谐振陀螺
原文传递
序贯无迹Kalman滤波器
7
作者 张雪楠 郑佰富 +2 位作者 张润恒 刘志伟 高媛 《黑龙江大学工程学报(中英俄文)》 2025年第1期37-45,共9页
针对多传感器非线性系统中量测数据不能同时刻到达融合中心的情况,研究在无迹Kalman滤波(Unscented Kalman filtering,UKF)算法的基础上,按照量测数据到达的先后顺序进行序贯融合,提出了序贯无迹Kalman滤波(Sequential unscented Kalman... 针对多传感器非线性系统中量测数据不能同时刻到达融合中心的情况,研究在无迹Kalman滤波(Unscented Kalman filtering,UKF)算法的基础上,按照量测数据到达的先后顺序进行序贯融合,提出了序贯无迹Kalman滤波(Sequential unscented Kalman filter,SUKF)算法。各个子系统通过无迹Kalman滤波器得到局部滤波估计,按照局部滤波结果到达融合中心的顺序,分别利用序贯协方差交叉融合(Sequential covariance intersection,SCI)算法和序贯逆协方差交叉融合(Sequential inverse covariance intersection,SICI)算法对各个子系统局部估计进行融合,避免了互协方差的计算,降低了计算负担。通过与集中式观测融合(Centralized observation fusion,CF)算法以及局部滤波器的精度对比分析,给出了3种融合算法的估计精度分析。用目标跟踪非线性系统仿真算例,验证了所提出的序贯滤波算法的有效性。 展开更多
关键词 无迹kalman滤波 序贯融合 序贯滤波 协方差交叉 逆协方差交叉
在线阅读 下载PDF
结合Kalman滤波与贝叶斯估计的无人机室内精确定位系统设计
8
作者 宋沂璐 刘悦 吴勇 《中国军转民》 2025年第8期41-43,共3页
为提高室内无人机定位精确度,设计了无人机室内精确定位系统,该系统的传感器模块可提供无人机运行状态及环境特征等基础信息数据。数据采集模块负责存储、降噪和误差修正基础信息,以提高数据的准确性。Kalman滤波模块用于计算无人机高... 为提高室内无人机定位精确度,设计了无人机室内精确定位系统,该系统的传感器模块可提供无人机运行状态及环境特征等基础信息数据。数据采集模块负责存储、降噪和误差修正基础信息,以提高数据的准确性。Kalman滤波模块用于计算无人机高度变化,精确量化高度数据。贝叶斯估计模块将室内精确定位转化为求解多次测量的概率密度函数最大值,既确定无人机位置,又能分析误差分布信息。路线规划控制模块规划无人机的飞行轨迹,控制飞行的姿态和速度等参数。实验结果表明,在经过系统降噪处理后,无人机飞行轨迹高度最高点为4.9米,螺旋下降后的最低点为0.36米,与实际飞行轨迹高度基本吻合。同时,无人机横轴坐标点、纵轴坐标点与真实坐标最高误差分别为5.50%和6.00%,精确度较高,具有很好的实用价值。 展开更多
关键词 无人机定位 kalman滤波 贝叶斯估计 概率密度函数 路线规划
在线阅读 下载PDF
Cubature Kalman Fusion Filtering Under Amplify-and-Forward Relays With Randomly Varying Channel Parameters 被引量:1
9
作者 Jiaxing Li Zidong Wang +2 位作者 Jun Hu Hongli Dong Hongjian Liu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期356-368,共13页
In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili... In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine. 展开更多
关键词 Amplify-and-forward(AaF)relays covariance intersection fusion cubature kalman filtering multi-sensor systems uniform boundedness
在线阅读 下载PDF
Idle speed control of proton exchange membrane fuel cell system via extended Kalman filter observer
10
作者 ZHAO Hong-hui DING Tian-wei +4 位作者 WANG Yi-lin HUANG Xing DU Jing HAO Zhi-qiang MIN Hai-tao 《控制理论与应用》 北大核心 2025年第8期1615-1624,共10页
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is... When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics. 展开更多
关键词 proton exchange membrane fuel cell idle speed control zero power output output power nonlinear model extended kalman filter observer
在线阅读 下载PDF
基于Vold-Kalman滤波的机动飞行下转子支承系统振动特性实验研究
11
作者 范翔南 陈曦 +2 位作者 张博 杨德志 任光明 《推进技术》 北大核心 2025年第3期227-241,共15页
机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波... 机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。 展开更多
关键词 Vold-kalman滤波 相对带宽 机动飞行 转子支承系统 振动特性试验
原文传递
基于Kalman滤波的电视视频抖动矫正技术应用研究
12
作者 刘永军 《电视技术》 2025年第6期217-219,共3页
电视视频质量受到诸多因素的影响,抖动是其中常见问题之一。首先,分析电视视频抖动问题及其成因,提出将Kalman滤波引入视频抖动矫正。其次,设计抖动矫正算法,包括运动参数估计、抖动补偿和视频帧重构3个核心步骤。最后,通过实验评估算... 电视视频质量受到诸多因素的影响,抖动是其中常见问题之一。首先,分析电视视频抖动问题及其成因,提出将Kalman滤波引入视频抖动矫正。其次,设计抖动矫正算法,包括运动参数估计、抖动补偿和视频帧重构3个核心步骤。最后,通过实验评估算法性能,证明了该算法在不同噪声干扰下的矫正优势以及在典型电视应用场景下的实时处理能力。 展开更多
关键词 电视视频 抖动矫正 kalman滤波 运动估计
在线阅读 下载PDF
Multi-information fusion algorithm for temperature prediction based on MP-Huber Kalman filter
13
作者 XU Wanjin LI Jiying LU Yandong 《Journal of Measurement Science and Instrumentation》 2025年第2期236-244,共9页
In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on opti... In order to reduce the error judgment of outliers in vehicle temperature prediction and improve the accuracy of single-station processor prediction data,a Kalman filter multi-information fusion algorithm based on optimized P-Huber weight function was proposed.The algorithm took Kalman filter(KF)as the whole frame,and established the decision threshold based on the confidence level of Chi-square distribution.At the same time,the abnormal error judgment value was constructed by Mahalanobis distance function,and the three segments of Huber weight function were formed.It could improve the accuracy of the interval judgment of outliers,and give a reasonable weight,so as to improve the tracking accuracy of the algorithm.The data values of four important locations in the vehicle obtained after optimized filtering were processed by information fusion.According to theoretical analysis,compared with Kalman filtering algorithm,the proposed algorithm could accurately track the actual temperature in the case of abnormal error,and multi-station data fusion processing could improve the overall fault tolerance of the system.The results showed that the proposed algorithm effectively reduced the interference of abnormal errors on filtering,and the synthetic value of fusion processing was more stable and critical. 展开更多
关键词 Huber weight function Mahalanobis distance kalman filter mulit-information fusion temperature prediction
在线阅读 下载PDF
面向矿山车辆预警方法的V2X技术和Kalman Net网络架构分析
14
作者 杨浩宇 温晓荣 +1 位作者 尚秀全 秦斌升 《自动化与仪器仪表》 2025年第7期234-238,共5页
矿山环境由于其复杂性往往会增加车辆事故发生的可能性。为提高矿山车辆预警系统的准确性,研究通过V2X(Vehicle to Everything)技术实现车辆信息共享,结合具备卡尔曼滤波器的神经网络与双向循环神经网络(KalmanNet-BRNN)模型对车辆状态... 矿山环境由于其复杂性往往会增加车辆事故发生的可能性。为提高矿山车辆预警系统的准确性,研究通过V2X(Vehicle to Everything)技术实现车辆信息共享,结合具备卡尔曼滤波器的神经网络与双向循环神经网络(KalmanNet-BRNN)模型对车辆状态进行估计。研究结果中,在4种数据集上,研究方法的均方误差平均降低了7.60、1.70、11.01和3.19,动态时间规整平均降低了2.05 m、3.50 m、2.73 m和5.38 m。结果表明,融合V2X技术和KalmanNet-BRNN网络架构可用于矿山车辆的预警,同时研究方法在多个数据集上均方误差最低,动态时间规整值最小,表明了研究方法能够提升矿山车辆预警系统的准确性,同时预测的车辆状态信息更为接近车辆真实状态;研究不仅提高了矿山作业的安全性,同时可为矿山企业的运营效率的提升提供数据支撑。 展开更多
关键词 矿山车辆 预警方法 V2X技术 kalman Net网络架构 动态时间规整
原文传递
Manifold-Optimized Error-State Kalman Filter for Robust Pose Estimation in Unmanned Aerial Vehicles
15
作者 Bolin Jia Zongwen Bai +5 位作者 Yiqun Gao Dong Wang Meili Zhou Peiqi Gao Pei Zhang Zhang Yang 《Journal of Electronic Research and Application》 2025年第2期247-257,共11页
This paper presents a manifold-optimized Error-State Kalman Filter(ESKF)framework for unmanned aerial vehicle(UAV)pose estimation,integrating Inertial Measurement Unit(IMU)data with GPS or LiDAR to enhance estimation ... This paper presents a manifold-optimized Error-State Kalman Filter(ESKF)framework for unmanned aerial vehicle(UAV)pose estimation,integrating Inertial Measurement Unit(IMU)data with GPS or LiDAR to enhance estimation accuracy and robustness.We employ a manifold-based optimization approach,leveraging exponential and logarithmic mappings to transform rotation vectors into rotation matrices.The proposed ESKF framework ensures state variables remain near the origin,effectively mitigating singularity issues and enhancing numerical stability.Additionally,due to the small magnitude of state variables,second-order terms can be neglected,simplifying Jacobian matrix computation and improving computational efficiency.Furthermore,we introduce a novel Kalman filter gain computation strategy that dynamically adapts to low-dimensional and high-dimensional observation equations,enabling efficient processing across different sensor modalities.Specifically,for resource-constrained UAV platforms,this method significantly reduces computational cost,making it highly suitable for real-time UAV applications. 展开更多
关键词 UAV pose estimation Error-State kalman Filter MANIFOLD GPS LIDAR
在线阅读 下载PDF
A Structural Dynamic Response Reconstruction Method for Continuous System Based on Kalman Filter
16
作者 LI Hongqiu JIANG Jinhui MOHAMED M Shadi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期250-260,共11页
The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diag... The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diagnosis,and related fields.This paper proposes a dynamic response reconstruction method based on the Kalman filter,which simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions.The weighted least squares method determines the load weighting matrix for excitation identification,while the minimum variance unbiased estimation determines the Kalman filter gain.The excitation prediction Kalman filter is constructed through time,excitation,and measurement updates.Subsequently,the response at the target point is reconstructed using the state vector,observation matrix,and excitation influence matrix obtained through the excitation prediction Kalman filter algorithm.An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman filtering algorithm in modal space is derived.The proposed structural dynamic response reconstruction method evaluates the response reconstruction and the load identification performance under various load types and errors through simulation examples.Results demonstrate the accurate excitation identification under different load conditions and simultaneous reconstruction of target point responses,verifying the feasibility and reliability of the proposed method. 展开更多
关键词 dynamic load identification structural response reconstruction excitation identification kalman filter continuous system
在线阅读 下载PDF
供水管网漏失量Kalman滤波算法模拟
17
作者 苏晓星 孙国兴 汪滢 《中国水运》 2025年第14期30-32,共3页
为准确计算管网漏失量,选择Kalman滤波算法建立管网漏失模型的状态方程与观测方程,并计算漏失量,进一步进行漏失模拟实验,利用Kalman滤波算法建立漏失模型并分析实验数据。结果表明,Kalman滤波法计算的管网漏失率为13.25%,对比水量设计... 为准确计算管网漏失量,选择Kalman滤波算法建立管网漏失模型的状态方程与观测方程,并计算漏失量,进一步进行漏失模拟实验,利用Kalman滤波算法建立漏失模型并分析实验数据。结果表明,Kalman滤波法计算的管网漏失率为13.25%,对比水量设计管网漏失率12.13%相差1.12%,应用Kalman滤波法建立漏失模型及计算供水管网漏失量可行,为农村水利工程采取高效供水管理方式、减少漏失量、提高管网控漏率提供理论参考。 展开更多
关键词 供水管网 漏失量 kalman算法 应用
在线阅读 下载PDF
基于抗差自适应Kalman滤波的低成本GNSS终端定位精度分析
18
作者 欧阳乐 《北京测绘》 2025年第10期1547-1553,共7页
低成本全球卫星导航系统(GNSS)终端存在低能耗特性,复杂环境对其定位精度和系统稳定性产生较大影响。为解决该问题,本文在数据预处理后,将抗差自适应卡尔曼(Kalman)滤波技术融入实时动态定位(RTK)流程,通过对验前残差中的所有粗差及验... 低成本全球卫星导航系统(GNSS)终端存在低能耗特性,复杂环境对其定位精度和系统稳定性产生较大影响。为解决该问题,本文在数据预处理后,将抗差自适应卡尔曼(Kalman)滤波技术融入实时动态定位(RTK)流程,通过对验前残差中的所有粗差及验后残差中超出阈值的残差进行抗差处理,确保残差符合标准,进而提升系统稳定性与可靠性。实验结果表明,采用抗差RTK技术的低成本GNSS终端,定位能力得到有效提升,且在不同环境下表现出差异化性能:在空旷环境中,北(N)、东(E)、高程(U)方向定位精度分别提高24.5%、28.0%、26.7%,收敛时间缩短31.7%,固定率提升23.2%;在复杂遮挡环境中,性能增幅则相对有限。 展开更多
关键词 抗差自适应卡尔曼(kalman)滤波 全球卫星导航系统(GNSS)终端 定位精度 实时动态载波相位差分(RTK)
在线阅读 下载PDF
An Online Exploratory Maximum Likelihood Estimation Approach to Adaptive Kalman Filtering
19
作者 Jiajun Cheng Haonan Chen +2 位作者 Zhirui Xue Yulong Huang Yonggang Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期228-254,共27页
Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when ... Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when both the process noise and measurement noise covariance matrices are relatively inaccurate. Maximum likelihood estimation(MLE) possesses the potential to achieve this goal, since its theoretical accuracy is guaranteed by asymptotic optimality and the convergence speed is fast due to weak dependence on accurate state estimation.Unfortunately, the maximum likelihood cost function is so intricate that the existing MLE methods can only simply ignore all historical measurement information to achieve online estimation,which cannot adequately realize the potential of MLE. In order to design online MLE-based AKFs with high estimation accuracy and fast convergence speed, an online exploratory MLE approach is proposed, based on which a mini-batch coordinate descent noise covariance matrix estimation framework is developed. In this framework, the maximum likelihood cost function is simplified for online estimation with fewer and simpler terms which are selected in a mini-batch and calculated with a backtracking method. This maximum likelihood cost function is sidestepped and solved by exploring possible estimated noise covariance matrices adaptively while the historical measurement information is adequately utilized. Furthermore, four specific algorithms are derived under this framework to meet different practical requirements in terms of convergence speed, estimation accuracy,and calculation load. Abundant simulations and experiments are carried out to verify the validity and superiority of the proposed algorithms as compared with existing state-of-the-art AKFs. 展开更多
关键词 Adaptive kalman filtering coordinate descent maximum likelihood estimation mini-batch optimization unknown noise covariance matrix
在线阅读 下载PDF
Enhanced robustness in constant modulus blind beamforming through L1-regularized state estimation with variable-splitting Kalman smoother and IEKS
20
作者 Chuanhui HAO Bin ZHANG Xubao SUN 《Chinese Journal of Aeronautics》 2025年第6期573-590,共18页
This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel a... This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches. 展开更多
关键词 State estimation Constant modulus blind beamforming kalman smoother Alternating direction method of multipliers Variable-splitting optimizer
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部