为提高零中频接收机中正交(in-phase quadrature,IQ)失配信号校正的收敛速度与鲁棒性,本文将Kalman滤波算法与盲源分离结构结合,提出了一种基于双通道Kalman滤波的校正算法。该算法通过状态空间建模与协方差自适应更新,能够在动态环境...为提高零中频接收机中正交(in-phase quadrature,IQ)失配信号校正的收敛速度与鲁棒性,本文将Kalman滤波算法与盲源分离结构结合,提出了一种基于双通道Kalman滤波的校正算法。该算法通过状态空间建模与协方差自适应更新,能够在动态环境下实现更高效、稳定的参数估计,从而实现对IQ失配信号的有效补偿。将本文算法与最小均方算法(least mean square,LMS)、归一化最小均方算法(normalized least mean square,NLMS)和仿射投影算法(affine projection algorithm,APA)进行对比仿真,结果显示,校正后信号的镜像抑制比(image rejection ratio,IRR)均达到约45 dB,但双通道Kalman滤波算法对应的IRR曲面图更加平滑,同时,16QAM和16PSK调制方式下该算法的误符号率最低,表明本文算法能够有效实现IQ失配校正,具有较好的稳定性。本文算法迭代约50次时,均方误差收敛趋近于0,而LMS、NLMS和APA算法则分别需要迭代约500次、400次和200次才能够收敛,表明该算法具有较好的收敛性。通过参数的敏感性仿真分析,在较大的参数范围内本文算法达到的IRR差别甚微,具有良好的鲁棒性。展开更多
In this paper,an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter(ASTUKF)is advanced to improve the precision of pose estimation and the stability for data computation.To suppress h...In this paper,an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter(ASTUKF)is advanced to improve the precision of pose estimation and the stability for data computation.To suppress high-frequency noise,an infinite impulse response filter(IIRF)is introduced at the front end of ASTUKF to preprocess the original data.Then the covariance matrix of the error is corrected and the measurement noise is estimated in the process of filtering.After that,the data from the experiment were tested on the hardware experiment platform.The experimental results show that compared to the traditional extended Kalman filter(EKF)and unscented Kalman filter(UKF)algorithms,the root mean square error(RMSE)of the roll axis results from the algorithm proposed in this paper is respectively reduced by approximately 57.5%and 36.1%;the RMSE of the pitch axis results decreases by nearly 58.4%and 51.5%,respectively;and the RMSE of the yaw axis results decreases almost 62.8%and 50.9%,correspondingly.The above results indicate that the algorithm enhances the ability of resisting high-frequency vibration interference and improves the accuracy of attitude solution.展开更多
机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波...机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。展开更多
In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili...In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.展开更多
Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection metho...Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems.展开更多
文摘为提高零中频接收机中正交(in-phase quadrature,IQ)失配信号校正的收敛速度与鲁棒性,本文将Kalman滤波算法与盲源分离结构结合,提出了一种基于双通道Kalman滤波的校正算法。该算法通过状态空间建模与协方差自适应更新,能够在动态环境下实现更高效、稳定的参数估计,从而实现对IQ失配信号的有效补偿。将本文算法与最小均方算法(least mean square,LMS)、归一化最小均方算法(normalized least mean square,NLMS)和仿射投影算法(affine projection algorithm,APA)进行对比仿真,结果显示,校正后信号的镜像抑制比(image rejection ratio,IRR)均达到约45 dB,但双通道Kalman滤波算法对应的IRR曲面图更加平滑,同时,16QAM和16PSK调制方式下该算法的误符号率最低,表明本文算法能够有效实现IQ失配校正,具有较好的稳定性。本文算法迭代约50次时,均方误差收敛趋近于0,而LMS、NLMS和APA算法则分别需要迭代约500次、400次和200次才能够收敛,表明该算法具有较好的收敛性。通过参数的敏感性仿真分析,在较大的参数范围内本文算法达到的IRR差别甚微,具有良好的鲁棒性。
基金supported by the Key Research and Development Program of Shaanxi Province(No.2024NC-YBXM-246)the Shaanxi Provincial Science and Technology Department(No.2024JC-YBQN-0725)+1 种基金the Education Department of Shaanxi Province(No.23JK0371)the Shaanxi University of Technology(No.SLGRCQD2318).
文摘In this paper,an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter(ASTUKF)is advanced to improve the precision of pose estimation and the stability for data computation.To suppress high-frequency noise,an infinite impulse response filter(IIRF)is introduced at the front end of ASTUKF to preprocess the original data.Then the covariance matrix of the error is corrected and the measurement noise is estimated in the process of filtering.After that,the data from the experiment were tested on the hardware experiment platform.The experimental results show that compared to the traditional extended Kalman filter(EKF)and unscented Kalman filter(UKF)algorithms,the root mean square error(RMSE)of the roll axis results from the algorithm proposed in this paper is respectively reduced by approximately 57.5%and 36.1%;the RMSE of the pitch axis results decreases by nearly 58.4%and 51.5%,respectively;and the RMSE of the yaw axis results decreases almost 62.8%and 50.9%,correspondingly.The above results indicate that the algorithm enhances the ability of resisting high-frequency vibration interference and improves the accuracy of attitude solution.
文摘机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。
基金supported in part by the National Natural Science Foundation of China(12171124,61933007)the Natural Science Foundation of Heilongjiang Province of China(ZD2022F003)+2 种基金the National High-End Foreign Experts Recruitment Plan of China(G2023012004L)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany
文摘In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.
基金Supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(22KJB520012)the Research Project on Higher Education Reform in Jiangsu Province(2023JSJG781)the College Student Innovation and Entrepreneurship Training Program Project(202313571008Z)。
文摘Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems.