期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Improved Gaussian Particle Filter Algorithm Using KLD-Sampling 被引量:1
1
作者 ZHOU Zhaihe ZHONG Yulu +1 位作者 ZENG Qingxi TIAN Xiangrui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期607-614,共8页
To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algori... To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algorithm calculates the KLD to adjust the size of the particle set between the discrete probability density function of particles and the true posterior probability density function.KLGPF has significant effect when the noise obeys Gaussian distribution and the statistical characteristics of noise change abruptly.Simulation results show that KLGPF could maintain a good estimation effect when the noise statistics changes abruptly.Compared with the particle filter algorithm using KLD-sampling(KLPF),the speed of KLGPF increases by 28%under the same conditions. 展开更多
关键词 particle filter Gaussian particle filter kld-sampling noise mutation adaptive particle numbers
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部