期刊文献+
共找到1,607篇文章
< 1 2 81 >
每页显示 20 50 100
Multifactor diagnostic model of converter energy consumption based on K-means algorithm and its application
1
作者 Fei-xiang Dai Guang Chen +3 位作者 Xiang-jun Bao Gong-guo Liu Lu Zhang Xiao-jing Yang 《Journal of Iron and Steel Research International》 2025年第8期2359-2369,共11页
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla... To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379. 展开更多
关键词 Equivalent energy consumption model Intelligent diagnostic model k-means clustering algorithm Online system Energy management
原文传递
A State of Art Analysis of Telecommunication Data by k-Means and k-Medoids Clustering Algorithms
2
作者 T. Velmurugan 《Journal of Computer and Communications》 2018年第1期190-202,共13页
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus... Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application. 展开更多
关键词 k-means algorithm k-Medoids algorithm DATA clusterING Time COMPLEXITY TELECOMMUNICATION DATA
暂未订购
Optimization of constitutive parameters of foundation soils k-means clustering analysis 被引量:7
3
作者 Muge Elif Orakoglu Cevdet Emin Ekinci 《Research in Cold and Arid Regions》 CSCD 2013年第5期626-636,共11页
The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ... The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils. 展开更多
关键词 foundation soil regression model k-means clustering analysis
在线阅读 下载PDF
Polarimetric Meteorological Satellite Data Processing Software Classification Based on Principal Component Analysis and Improved K-Means Algorithm 被引量:1
4
作者 Manyun Lin Xiangang Zhao +3 位作者 Cunqun Fan Lizi Xie Lan Wei Peng Guo 《Journal of Geoscience and Environment Protection》 2017年第7期39-48,共10页
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th... With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation. 展开更多
关键词 Principal COMPONENT analysis Improved k-mean algorithm METEOROLOGICAL Data Processing FEATURE analysis SIMILARITY algorithm
在线阅读 下载PDF
Improved k-means clustering algorithm 被引量:16
5
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 clusterING k-means algorithm silhouette coefficient
在线阅读 下载PDF
Clustering analysis algorithm for security supervising data based on semantic description in coal mines 被引量:1
6
作者 孟凡荣 周勇 夏士雄 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期354-357,共4页
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising... In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm. 展开更多
关键词 semantic description clustering analysis algorithm similarity measurement
在线阅读 下载PDF
基于K-means算法的艾德莱斯绸色彩提取方法的优化设计
7
作者 刘恒君 饶蕾 曹远荣 《毛纺科技》 北大核心 2025年第8期82-90,共9页
为了提高艾德莱斯绸的数据化以及数字化研究,针对艾德莱斯绸本身的工艺特征优化设计一种基于K-means聚类算法的色彩提取方法。首先采用非接触扫描仪扫描样本获得图像;通过中值滤波对比图像在不同窗口尺寸下的平滑降噪效果,确定最适合艾... 为了提高艾德莱斯绸的数据化以及数字化研究,针对艾德莱斯绸本身的工艺特征优化设计一种基于K-means聚类算法的色彩提取方法。首先采用非接触扫描仪扫描样本获得图像;通过中值滤波对比图像在不同窗口尺寸下的平滑降噪效果,确定最适合艾德莱斯绸图像预处理的窗口数值;再将图像的色彩信息从RGB空间转为更符合视觉分析的HSV空间;结合艾德莱斯绸本身纹样特征,对比2种常见的最佳类簇数目k值选取办法,并进行k值选取办法的优化和对比;最后将聚类算法与数据分析相结合,采用多个k值分别确定图像单个色彩。结果表明:该优化方式可以较为准确地提取出复杂的艾德莱斯绸色彩及其占比情况,为提取复杂图像色彩提供了新的研究思路,拓宽传统纹样图像的色彩研究方式。 展开更多
关键词 k-means聚类算法 艾德莱斯绸 色彩提取 数据分析
在线阅读 下载PDF
结合HSV-HS与K-means聚类算法的冬小麦苗密度估测
8
作者 陶婷 孟炀 +2 位作者 杜晓初 梅新 杨小冬 《测绘科学》 北大核心 2025年第4期50-62,共13页
针对植株高密度、植被覆盖度梯度差异弱,苗密度难以高精度估测的问题,该文通过RGB-HSV颜色空间转换,构建HSV-HS分割模型在苗期提取植被信息。利用K-means聚类分析将其分为小麦主茎和叶缘背景两部分。对聚类后的小麦主茎构建连通域并识... 针对植株高密度、植被覆盖度梯度差异弱,苗密度难以高精度估测的问题,该文通过RGB-HSV颜色空间转换,构建HSV-HS分割模型在苗期提取植被信息。利用K-means聚类分析将其分为小麦主茎和叶缘背景两部分。对聚类后的小麦主茎构建连通域并识别下部角点中心位置,定位主茎基,获取主茎基基数,并构建苗密度估测模型。与传统植被覆盖度、植被指数估测苗密度模型相比,本方法在冬小麦苗密度估测中表现出更高的精度。基于偏最小二乘法算法结合主茎基数构建基本苗密度估测模型,整体决定系数(R2)最高,均方根误差(RMSE)最小。通过不同参数组合,表明以主茎基数结合植被指数所构建偏最小二乘法的苗密度估测模型精度最高。利用HSV-HS结合K-means聚类方法获取的主茎基数,再叠加植被指数所构建的偏最小二乘法算法模型,在高密度、叶片重叠率高的情况下,能相对精准估测冬小麦苗密度。 展开更多
关键词 冬小麦 k-means聚类分析算法 主茎基识别 苗密度估测 无人机数码影像
原文传递
基于K-means聚类算法和BP神经网络的代理购电量预测模型研究 被引量:2
9
作者 于志诚 穆士才 +4 位作者 梁晔 李镓辰 林华 陈己宸 金鑫 《湖南电力》 2025年第1期68-72,共5页
通过对某地区代理购电用户的深入画像分析,研究不同因素对代理购电用户电量的影响;通过聚类算法实现用户群体的分类;通过神经网络算法将纵向时序电量和横向影响因素纳入预测公式,针对不同聚类簇构建符合其特征的预测模型;最后将模型整合... 通过对某地区代理购电用户的深入画像分析,研究不同因素对代理购电用户电量的影响;通过聚类算法实现用户群体的分类;通过神经网络算法将纵向时序电量和横向影响因素纳入预测公式,针对不同聚类簇构建符合其特征的预测模型;最后将模型整合,实现对整体电量的高准确率预测。 展开更多
关键词 代理购电 电量预测 聚类算法 神经网络 画像分析
在线阅读 下载PDF
基于改进K-means++聚类算法的汽车行驶工况构建
10
作者 陈俊杰 赵红 +3 位作者 罗勇 丁晓云 田嘉昊 张泽谦 《青岛大学学报(工程技术版)》 2025年第2期67-74,共8页
为了通过科学方法优化交通管理,减少环境污染,提出了一种基于改进的K-means++聚类算法,结合马尔科夫链理论,对汽车行驶工况进行分析构建。对收集到的车辆行驶数据进行预处理,包括数据清洗和特征提取,通过主成分分析降低数据维度,引入基... 为了通过科学方法优化交通管理,减少环境污染,提出了一种基于改进的K-means++聚类算法,结合马尔科夫链理论,对汽车行驶工况进行分析构建。对收集到的车辆行驶数据进行预处理,包括数据清洗和特征提取,通过主成分分析降低数据维度,引入基于余弦相似度度量的K-means++算法,通过肘部法则确定最佳聚类数目。结果表明,4类行驶工况能够有效模拟实际驾驶情况,通过聚类结果的平均轮廓系数对比证明,改进算法的聚类性能显著提升。利用马尔科夫链模型验证各工况之间的转移关系,构建最终汽车行驶工况。主要特征参数平均相对误差仅为4.726%,在模拟实际道路条件方面具有较高的合理性和准确性。 展开更多
关键词 聚类算法 汽车行驶工况 主成分分析 马尔科夫链
在线阅读 下载PDF
K-Means聚类算法在医学专业课程成绩分析中的应用
11
作者 杨雨悦 赵永峰 +4 位作者 徐三研 盛婧怡 雷娟 甘卫华 宋佳宇 《黑龙江科学》 2025年第7期36-39,共4页
对医学专业课程成绩进行数据挖掘,为提升教学质量提供参考。利用K-means聚类算法,对南京医科大学医学专业(内科学与儿科学)学生的成绩进行分析。结果表明,学生原始成绩近似成正态分布,运用手肘法及轮廓系数法得到适合医学专业学生课程... 对医学专业课程成绩进行数据挖掘,为提升教学质量提供参考。利用K-means聚类算法,对南京医科大学医学专业(内科学与儿科学)学生的成绩进行分析。结果表明,学生原始成绩近似成正态分布,运用手肘法及轮廓系数法得到适合医学专业学生课程成绩分析的模型。对医学生的课程成绩进行聚类分析与评价,有益于实施优质化且针对性的教学方案,提升医学生的学业成绩。 展开更多
关键词 k-means聚类算法 内科学 儿科学 成绩分析模型
在线阅读 下载PDF
基于K-means聚类的老年人养老服务需求识别
12
作者 张馨月 宋泽宇 +2 位作者 田晓伟 韩霜 孔杨 《医学信息学杂志》 2025年第2期42-47,共6页
目的/意义精准识别老年人养老服务需求,为调整养老服务供给提供参考。方法/过程利用八爪鱼采集器在网络平台收集养老服务需求相关文本数据1624条,运用K-means算法进行聚类分析,确定最佳聚类数量;结合词云图分析结果,精准识别各类养老需... 目的/意义精准识别老年人养老服务需求,为调整养老服务供给提供参考。方法/过程利用八爪鱼采集器在网络平台收集养老服务需求相关文本数据1624条,运用K-means算法进行聚类分析,确定最佳聚类数量;结合词云图分析结果,精准识别各类养老需求。结果/结论养老服务需求分为医疗照护类、生活照料类、预防保健类、精神慰藉类、环境安全类5个方面。政府、社会组织、医疗机构和养老机构等应对现有资源进行分类整合,通过政策引导、专业培训、社会动员等多种途径,协同构建全方位、多层次的养老服务体系,以满足老年人养老需求。 展开更多
关键词 养老服务 老年人需求 聚类分析 k-means算法
暂未订购
基于K-Means聚类算法的直流电网换流器故障自动化检测系统 被引量:1
13
作者 翁子韵 《自动化与仪表》 2025年第4期86-90,共5页
直流电网换流器结构复杂、监测信号较多,为了自动从大量监测信号中筛选关键特征,准确识别电网换流器故障,设计基于K-Means聚类算法的直流电网换流器故障自动化检测系统。采集的各线路电压信号,采用改进主成分分析法将高维的监测信号数... 直流电网换流器结构复杂、监测信号较多,为了自动从大量监测信号中筛选关键特征,准确识别电网换流器故障,设计基于K-Means聚类算法的直流电网换流器故障自动化检测系统。采集的各线路电压信号,采用改进主成分分析法将高维的监测信号数据降维成少数几个主成分,作为反映线路电压信号的主要特征;通过改进K-Means聚类算法对所提取信号主成分特征进行分组归类,实现电网换流器故障信号分类检测。经测试,此系统对直流电网换流器单极故障、双极故障样本进行聚类识别后,识别结果的误差平方和最大值仅为0.02,可实现高精度的直流电网换流器故障自动化检测。 展开更多
关键词 主成分分析法 k-means聚类算法 直流电网 换流器 故障检测 自动化
在线阅读 下载PDF
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
14
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
Coordinate Descent K-means Algorithm Based on Split-Merge
15
作者 Fuheng Qu Yuhang Shi +2 位作者 Yong Yang Yating Hu Yuyao Liu 《Computers, Materials & Continua》 SCIE EI 2024年第12期4875-4893,共19页
The Coordinate Descent Method for K-means(CDKM)is an improved algorithm of K-means.It identifies better locally optimal solutions than the original K-means algorithm.That is,it achieves solutions that yield smaller ob... The Coordinate Descent Method for K-means(CDKM)is an improved algorithm of K-means.It identifies better locally optimal solutions than the original K-means algorithm.That is,it achieves solutions that yield smaller objective function values than the K-means algorithm.However,CDKM is sensitive to initialization,which makes the K-means objective function values not small enough.Since selecting suitable initial centers is not always possible,this paper proposes a novel algorithm by modifying the process of CDKM.The proposed algorithm first obtains the partition matrix by CDKM and then optimizes the partition matrix by designing the split-merge criterion to reduce the objective function value further.The split-merge criterion can minimize the objective function value as much as possible while ensuring that the number of clusters remains unchanged.The algorithm avoids the distance calculation in the traditional K-means algorithm because all the operations are completed only using the partition matrix.Experiments on ten UCI datasets show that the solution accuracy of the proposed algorithm,measured by the E value,is improved by 11.29%compared with CDKM and retains its efficiency advantage for the high dimensional datasets.The proposed algorithm can find a better locally optimal solution in comparison to other tested K-means improved algorithms in less run time. 展开更多
关键词 cluster analysis k-means coordinate descent k-means SPLIT-MERGE
在线阅读 下载PDF
Integrating petrophysical data into efficient iterative cluster analysis for electrofacies identification in clastic reservoirs
16
作者 Mohammed A.Abbas Watheq J.Al-Mudhafar +1 位作者 Aqsa Anees David A.Wood 《Energy Geoscience》 EI 2024年第4期291-305,共15页
Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an... Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data. 展开更多
关键词 cluster analysis Electrofacies classification Expectation-maximization(EM)algorithm Clastic reservoir Maximum likelihood estimate(MLE)
在线阅读 下载PDF
基于异构大数据平台的并行化K-means算法设计与实现
17
作者 张适显 黄万兵 熊文 《无线互联科技》 2025年第4期88-91,119,共5页
K-means算法是数据挖掘和机器学习中用于聚类分析的基础工具,广泛应用于文档聚类、异常值检测等多个领域。然而,随着大数据时代的来临,传统方法难以满足大规模数据聚类分析的处理需求。为此,文章基于Spark和GPU构建异构大数据平台,对K-m... K-means算法是数据挖掘和机器学习中用于聚类分析的基础工具,广泛应用于文档聚类、异常值检测等多个领域。然而,随着大数据时代的来临,传统方法难以满足大规模数据聚类分析的处理需求。为此,文章基于Spark和GPU构建异构大数据平台,对K-means算法进行并行化设计与实现,以提高K-means算法的数据处理效率和资源利用率。文章在4个公开的真实数据集上验证了该方法的有效性,与传统的并行化K-means方法进行对比,实验结果证明该方法相较传统方法具备更好的性能。 展开更多
关键词 并行计算 异构计算 大数据技术 数据挖掘 k-means算法 聚类分析
在线阅读 下载PDF
New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence
18
作者 WANG Jian ZHU Jingyi +1 位作者 SHI Hua LIU Huchen 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1491-1506,共16页
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch... Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA. 展开更多
关键词 failure mode and effect analysis(FMEA) interval 2-tuple linguistic variable(I2TLV) consensus reaching density peak clustering algorithm
在线阅读 下载PDF
基于K-means聚类分析算法的高职药学类专业学生在线学习行为分析
19
作者 单雪梅 《信息与电脑》 2025年第17期42-44,共3页
对142名修习药学服务实务课程的高职药学类专业学生的在线学习行为进行K-means聚类分析,消极学习者、努力学习者、持续学习者和优秀学习者的内容资源使用量、回帖量、测试量、测试时间、章节测试成绩、期中测试成绩及期末测试成绩均呈... 对142名修习药学服务实务课程的高职药学类专业学生的在线学习行为进行K-means聚类分析,消极学习者、努力学习者、持续学习者和优秀学习者的内容资源使用量、回帖量、测试量、测试时间、章节测试成绩、期中测试成绩及期末测试成绩均呈递增趋势。基于K-means聚类分析算法分析学生在线学习行为,能为制定科学的教学方案提供参考。 展开更多
关键词 k-means聚类分析算法 高职药学类专业 在线学习行为
在线阅读 下载PDF
An efficient enhanced k-means clustering algorithm 被引量:30
20
作者 FAHIM A.M SALEM A.M +1 位作者 TORKEY F.A RAMADAN M.A 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1626-1633,共8页
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista... In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation. 展开更多
关键词 clustering algorithms cluster analysis k-means algorithm Data analysis
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部