期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
The Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm:A new earthquake clustering method and its application to the Sichuan–Yunnan Block
1
作者 JieYi Hou Feng Hu +1 位作者 Yang Zang LingYuan Meng 《Earth and Planetary Physics》 2025年第4期828-841,共14页
We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm el... We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm eliminates the need for hyperparameter tuning or reliance on fixed thresholds,offering enhanced flexibility for clustering across varied seismic scales.By integrating cumulative probability and BGMM with principal component analysis(PCA),the BGMM-NND algorithm effectively distinguishes between background and triggered earthquakes while maintaining the magnitude component and resolving the issue of excessively large spatial cluster domains.We apply the BGMM-NND algorithm to the Sichuan–Yunnan seismic catalog from 1971 to 2024,revealing notable variations in earthquake frequency,triggering characteristics,and recurrence patterns across different fault zones.Distinct clustering and triggering behaviors are identified along different segments of the Longmenshan Fault.Multiple seismic modes,namely,the short-distance mode,the medium-distance mode,the repeating-like mode,the uniform background mode,and the Wenchuan mode,are uncovered.The algorithm's flexibility and robust performance in earthquake clustering makes it a valuable tool for exploring seismicity characteristics,offering new insights into earthquake clustering and the spatiotemporal patterns of seismic activity. 展开更多
关键词 earthquake clustering BGMM-NND algorithm Sichuan–Yunnan Block seismic modes
在线阅读 下载PDF
基于改进k-modes算法的松鼠驱离策略研究
2
作者 孙少禹 祁海涛 《电工技术》 2025年第14期144-147,共4页
针对已安装的驱鼠装置,实际数据没有得到有效性的证实,利用改进的k-modes算法,对基于实际数据的驱鼠装置进行聚类分析,用少量有效性标注的装置数据作为测试集,验证改进算法的聚类效果,并设计了一种驱鼠装置。
关键词 驱鼠装置 k-modes算法 聚类效果
在线阅读 下载PDF
一种基于粗糙熵的改进K-modes聚类算法
3
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 聚类 k-modes算法 粗糙集 粗糙熵 属性约简 权重
在线阅读 下载PDF
基于K-modes聚类算法的山东省传统村落空间风貌类型及区划研究 被引量:3
4
作者 范勇 李玄 肖文杰 《小城镇建设》 2024年第5期100-107,共8页
传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-mo... 传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-modes聚类算法对山东省177个传统村落进行聚类分析,得到八大空间风貌类型,进一步结合区域文化、地理特点及行政区划,划分出山东省5个传统村落风貌区,从宏观视角分析了山东省传统村落空间风貌特征及其形成与发展的内在逻辑和地理分布规律,为更加整体全面地认识山东省传统村落特点、开展区域性传统村落集中连片保护利用等工作提供科学参考。 展开更多
关键词 传统村落 空间基因 k-modes聚类算法 空间区划 山东省
在线阅读 下载PDF
改进的k-modes聚类算法在协同过滤就业推荐算法中的应用 被引量:1
5
作者 刘逗逗 王文发 许淳 《延安大学学报(自然科学版)》 2024年第2期96-100,共5页
为了给高校毕业生提供精准的个性化就业推荐服务,将基于动态权重相互依存距离的改进k-modes聚类算法应用于协同过滤推荐算法中。定义不同样本点属性之间的距离等于属性值内部距离和属性间外部距离的加权和,选择初始簇质心时,动态调整样... 为了给高校毕业生提供精准的个性化就业推荐服务,将基于动态权重相互依存距离的改进k-modes聚类算法应用于协同过滤推荐算法中。定义不同样本点属性之间的距离等于属性值内部距离和属性间外部距离的加权和,选择初始簇质心时,动态调整样本点与簇质心的距离以及簇密度的组合权重,动态设置簇密度计算公式的半径,根据样本点的概率值选出初始簇质心;迭代计算和优化得到满足精度的学生簇和职位簇;构建学生-职位矩阵,计算应届生和往届生的相似度、往届生和入职岗位的相似度,选择二者的相似度超过阈值的应届生簇和职位簇组合为匹配对进行匹配,并将匹配信息降序排列形成匹配列表,依据匹配列表进行双向推荐和信息推送,为高校的就业推荐和指导提供信息导向和技术支持。 展开更多
关键词 双边匹配算法 协同过滤算法 聚类分析 k-modes算法 相似性度量
在线阅读 下载PDF
New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence
6
作者 WANG Jian ZHU Jingyi +1 位作者 SHI Hua LIU Huchen 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1491-1506,共16页
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch... Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA. 展开更多
关键词 failure mode and effect analysis(FMEA) interval 2-tuple linguistic variable(I2TLV) consensus reaching density peak clustering algorithm
在线阅读 下载PDF
基于新的相异度量的模糊K-Modes聚类算法 被引量:5
7
作者 白亮 曹付元 梁吉业 《计算机工程》 CAS CSCD 北大核心 2009年第16期192-194,共3页
传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量... 传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量,并将它应用于传统的模糊K-Modes聚类算法。与传统的K-Modes和模糊K-Modes聚类算法相比,该相异度量是有效的。 展开更多
关键词 模糊K—modes聚类算法 相异度量 类中心
在线阅读 下载PDF
基于分类型矩阵对象数据的MD fuzzy k-modes聚类算法 被引量:10
8
作者 李顺勇 张苗苗 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2019年第6期1325-1337,共13页
传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,... 传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,针对矩阵对象数据聚类算法的研究相对较少,还有很多问题有待解决.利用fuzzy k-modes算法的聚类过程,提出一种基于矩阵对象数据的matrix-object data fuzzy k-modes(MD fuzzy k-modes)聚类算法.该算法结合模糊集的概念引入模糊因子β,重新定义了矩阵对象间的相异性度量,并给出类中心的启发式更新算法.最后,在5个真实数据集上验证了MD fuzzy k-modes算法的有效性,并分析了模糊因子β与隶属度w之间的关系.大数据时代,利用MD fuzzy k-modes算法对多条记录进行聚类,能更易发现顾客的消费偏好,从而做出更有针对性的推荐. 展开更多
关键词 矩阵对象数据 MD FUZZY k-modes算法 相异性度量 类中心 聚类
在线阅读 下载PDF
基于贝叶斯距离的K-modes聚类算法 被引量:5
9
作者 赵亮 刘建辉 张昭昭 《计算机工程与科学》 CSCD 北大核心 2017年第1期188-193,共6页
K-modes算法中原有的分类变量间距离度量方法无法体现属性值之间差异,对此提出了一种基于朴素贝叶斯分类器中间运算结果的距离度量。该度量构建代表分类变量的特征向量并计算向量间的欧氏距离作为变量间的距离。将提出的距离度量代入K-m... K-modes算法中原有的分类变量间距离度量方法无法体现属性值之间差异,对此提出了一种基于朴素贝叶斯分类器中间运算结果的距离度量。该度量构建代表分类变量的特征向量并计算向量间的欧氏距离作为变量间的距离。将提出的距离度量代入K-modes聚类算法并在多个UCI公共数据集上与其他度量方法进行比较,实验结果表明该距离度量更加有效。 展开更多
关键词 K—modes聚类算法 分类变量 朴素贝叶斯分类器 距离度量
在线阅读 下载PDF
基于K-modes聚类的半导体封装测试粗日投料控制 被引量:1
10
作者 姚丽丽 史海波 刘昶 《计算机集成制造系统》 EI CSCD 北大核心 2014年第7期1743-1750,共8页
针对半导体封装测试粗日投料控制问题,以降低生产过程中的改机代价为目标,提出一种新的基于品种聚类的综合投料控制策略。提出一种新的改进量限定属性赋权K-modes算法对投产品种进行聚类,以瓶颈工序的产能类型个数作为聚类类别个数,同... 针对半导体封装测试粗日投料控制问题,以降低生产过程中的改机代价为目标,提出一种新的基于品种聚类的综合投料控制策略。提出一种新的改进量限定属性赋权K-modes算法对投产品种进行聚类,以瓶颈工序的产能类型个数作为聚类类别个数,同时对各个类别的聚类数目进行限定,依据影响改机代价的投产品种属性信息对投产品种进行聚类。在聚类的基础上,采用基于品种平均和投产量平均结合的综合投料策略确定日投产品种和数量。通过实验验证了所提策略的有效性和优越性。 展开更多
关键词 半导体封装测试 粗日投料控制策略 改机代价 k-modes聚类算法
在线阅读 下载PDF
基于新相异度量的模糊K-Modes聚类算法 被引量:2
11
作者 张月琴 陈彩棠 《电脑开发与应用》 2012年第5期32-34,共3页
提出了一种基于新相异度量的模糊K-Modes算法。该算法假定不同属性对聚类结果有不同程度的影响,定义了新的属性值函数,以基于划分相似度的聚类精确度作为聚类结果的评价准则。通过真实数据的实验结果表明,新的基于相异度量的模糊K-Mode... 提出了一种基于新相异度量的模糊K-Modes算法。该算法假定不同属性对聚类结果有不同程度的影响,定义了新的属性值函数,以基于划分相似度的聚类精确度作为聚类结果的评价准则。通过真实数据的实验结果表明,新的基于相异度量的模糊K-Modes算法比传统的模糊K-Modes算法有更好的聚类效果。 展开更多
关键词 K—modes聚类算法 相异度量 分类属性
在线阅读 下载PDF
基于离散小波变换和模糊K-modes的负荷聚类算法 被引量:25
12
作者 张江林 张亚超 +2 位作者 洪居华 高红均 刘俊勇 《电力自动化设备》 EI CSCD 北大核心 2019年第2期100-106,122,共8页
为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的... 为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的思想选取原始曲线的有效分量曲线;对所选的分量曲线进行趋势编码,将连续负荷数据转化为离散类属性数据;基于平均密度确定初始聚类条件,利用模糊K-modes聚类算法对曲线进行形态聚类,得到负荷曲线模板;将所提算法与传统K-means算法及层次聚类算法进行比较,从而验证了所提算法的有效性。 展开更多
关键词 智能电网 负荷聚类 离散小波变换 模糊k-modes聚类算法 用电模式
在线阅读 下载PDF
Fuzzy BC-k-modes:一种分类矩阵对象数据的聚类算法
13
作者 李顺勇 余曼 王改变 《计算机应用与软件》 北大核心 2023年第1期287-297,共11页
传统的聚类算法主要对具有单值属性的数据进行聚类研究,针对矩阵对象数据的研究较少,提出一种新的fuzzy between-cluster k-modes(简称Fuzzy BC-k-modes)聚类算法。在Fuzzy BC-k-modes算法中,采用增加簇间信息(不同类中的对象到其他类... 传统的聚类算法主要对具有单值属性的数据进行聚类研究,针对矩阵对象数据的研究较少,提出一种新的fuzzy between-cluster k-modes(简称Fuzzy BC-k-modes)聚类算法。在Fuzzy BC-k-modes算法中,采用增加簇间信息(不同类中的对象到其他类中心的距离)去修正目标函数,在对修正的目标函数寻求局部最优解时,提出隶属度矩阵的更新公式。最后,在四个真实数据集上验证了Fuzzy BC-k-modes算法的有效性,并且分析了模糊因子与隶属度间的关系。 展开更多
关键词 簇间信息 分类矩阵对象数据 聚类 Fuzzy BC-k-modes算法
在线阅读 下载PDF
粗糙K-Modes聚类算法 被引量:6
14
作者 李仁侃 叶东毅 《计算机应用》 CSCD 北大核心 2011年第1期97-100,共4页
Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙... Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙K-Modes算法,通过粗糙集的上、下近似度量数据样本在类内的重要性程度,不仅可以获得比新K-Modes算法更好的聚类效果,而且可以在保证聚类效果的基础上降低白亮等人提出的基于粗糙集改进的K-Modes算法的计算复杂度。对几个UCI的数据集的测试实验结果显示出新算法的优良性能。 展开更多
关键词 聚类 K—modes算法 粗糙集 类中心 聚类精度
在线阅读 下载PDF
基于结构相似性的k-modes算法 被引量:2
15
作者 黄苑华 谢峰 +1 位作者 郝志峰 蔡瑞初 《计算机工程与应用》 CSCD 北大核心 2017年第23期102-107,共6页
聚类是数据挖掘中重要的技术之一,它是按照相似原则将数据进行分类。然而分类型数据的聚类是学习算法中重要而又棘手的问题。传统的k-modes算法采用简单的0-1匹配方法定义两个属性值之间的相异度,没有将整个数据集的分布考虑进来,导致... 聚类是数据挖掘中重要的技术之一,它是按照相似原则将数据进行分类。然而分类型数据的聚类是学习算法中重要而又棘手的问题。传统的k-modes算法采用简单的0-1匹配方法定义两个属性值之间的相异度,没有将整个数据集的分布考虑进来,导致差异性度量不够准确。针对这个问题,提出基于结构相似性的k-modes算法。该算法不仅考虑属性值它们本身的异同,而且考虑了它们在其他属性下所处的结构。从集群识别和准确率两个方面进行仿真实验,表明基于结构相似性的k-modes算法在伸缩性和准确率方面更有效。 展开更多
关键词 聚类分析 分类型数据 相异度度量 结构相似性 k-modes算法
在线阅读 下载PDF
基于K-modes聚类算法的安徽历史文化名村分类及保护发展策略
16
作者 张泉 薛珊珊 邹成东 《华中建筑》 2023年第1期23-27,共5页
以安徽省44个省级以上历史文化名村为研究对象,分析其空间分布特征与保护管理现状,并探讨影响其类型划分的具体因素。同时,借鉴学者关于历史文化名村和传统村落分类的研究,以地理条件、产业经济、社会生活、历史文化为主要维度,构建形... 以安徽省44个省级以上历史文化名村为研究对象,分析其空间分布特征与保护管理现状,并探讨影响其类型划分的具体因素。同时,借鉴学者关于历史文化名村和传统村落分类的研究,以地理条件、产业经济、社会生活、历史文化为主要维度,构建形成安徽历史文化名村类型划分的指标体系。基于此,运用K-modes聚类算法,将安徽历史文化名村划分为生态宜居型、文旅资源型、特色民俗型、综合发展型四种类型,并总结各类历史文化名村的典型特征,进而提出相应的保护与发展策略。 展开更多
关键词 历史文化名村 k-modes 聚类算法 保护发展策略 安徽
在线阅读 下载PDF
基于模糊K-Modes和免疫遗传算法的聚类分析 被引量:2
17
作者 曹文婷 邹海 段凤玲 《计算机技术与发展》 2009年第2期151-153,共3页
为了克服传统的模糊K-Modes算法分类正确率低、收敛速度慢的缺点,文中将免疫遗传算法应用到聚类分析中,提出了一种基于模糊K-Modes和免疫遗传算法的聚类算法。通过引入免疫算子,不仅提高了收敛速度,而且避免了陷于局部极小,从而能较快... 为了克服传统的模糊K-Modes算法分类正确率低、收敛速度慢的缺点,文中将免疫遗传算法应用到聚类分析中,提出了一种基于模糊K-Modes和免疫遗传算法的聚类算法。通过引入免疫算子,不仅提高了收敛速度,而且避免了陷于局部极小,从而能较快地收敛到全局最优解。免疫算子包括抽取疫苗、接种疫苗和选择疫苗。实验结果证明,此算法具有较好的聚类效果,且稳定性强。 展开更多
关键词 模糊聚类 K—modes免疫遗传算法 优化计算
在线阅读 下载PDF
一种基于最大信息系数预处理的k-modes聚类方法 被引量:4
18
作者 李明媚 文成林 胡绍林 《系统仿真学报》 CAS CSCD 北大核心 2022年第10期2204-2212,共9页
为解决现有k-modes聚类方法因忽略了变量属性之间的弱相关性,常造成其在实际应用中聚类性能不佳的问题,提出一种包含属性弱相关性的新k-modes聚类方法。引入最大信息系数(maximum information coefficient,MIC)度量数据集中变量属性之... 为解决现有k-modes聚类方法因忽略了变量属性之间的弱相关性,常造成其在实际应用中聚类性能不佳的问题,提出一种包含属性弱相关性的新k-modes聚类方法。引入最大信息系数(maximum information coefficient,MIC)度量数据集中变量属性之间的相关性;将得到的MIC值与原有距离进行融合,建立包含属性弱相关性信息的新度量方法,以增强变量属性间相关信息的完备性,建立更加精细的k-modes聚类方法;调用3种不同的数据集,将新方法与原有的k-modes聚类方法和其他改进k-modes聚类方法的性能进行对比,并通过仿真结果表明了新方法的有效性。 展开更多
关键词 聚类方法 k-modes 最大信息系数 距离度量 变量属性
原文传递
基于簇内簇间相异度的k-modes算法 被引量:2
19
作者 贾子琪 宋玲 《计算机工程与设计》 北大核心 2021年第9期2492-2500,共9页
为提高k-modes算法的精度并解决初始簇中心选择问题,提出一种基于簇内簇间相异度的k-modes算法(IKMCA)。基于簇内簇间相似性对相异度系数进行改进,给出初始簇中心自主选择的具体方法。提出的簇内簇间相异度系数考虑特征值本身的相异性... 为提高k-modes算法的精度并解决初始簇中心选择问题,提出一种基于簇内簇间相异度的k-modes算法(IKMCA)。基于簇内簇间相似性对相异度系数进行改进,给出初始簇中心自主选择的具体方法。提出的簇内簇间相异度系数考虑特征值本身的相异性与其它相关特征对它们的区分性。提出的初始簇中心自主选择方法可以自动确定聚类个数和初始簇中心位置。实验结果表明,提出算法在聚类精度、纯度、召回率上均优于经典k-modes算法及其变体算法。 展开更多
关键词 k模式算法 簇内簇间相似性 分类型数据 频率 相异度系数
在线阅读 下载PDF
基于改进K-modes聚类的KNN分类算法 被引量:25
20
作者 王志华 刘绍廷 罗齐 《计算机工程与设计》 北大核心 2019年第8期2228-2234,共7页
为解决K-modes算法初始化k簇时误差率较高和KNN(K最近邻算法)算法面对大样本数据量时分类不准确的现状,分析传统的K-modes算法从k簇的初始化到簇中心不再变化的全过程和KNN(K最近邻算法)算法在面对大样本数据时执行效率低下的问题,提出... 为解决K-modes算法初始化k簇时误差率较高和KNN(K最近邻算法)算法面对大样本数据量时分类不准确的现状,分析传统的K-modes算法从k簇的初始化到簇中心不再变化的全过程和KNN(K最近邻算法)算法在面对大样本数据时执行效率低下的问题,提出改进的K-modes-KNN算法。使用字符串核函数初始化k簇,字符串核函数迭代计算样本到簇中心的距离来动态改变簇中心,利用改进的K-modes算法将数据集进行分簇处理后,在每个子簇中建立KNN(K最近邻算法)分类模型。通过真实数据验证了所提算法在一定程度上优于同种分类算法。 展开更多
关键词 k-modes算法 KNN算法 分类 簇中心 k-modes-KNN算法 字符串核函数
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部