在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
针对K-means聚类算法易受到初始聚类中心的影响且易陷入局部最优值的不足,提出一种基于改进蜣螂优化算法的K-means聚类算法。首先,引入分段线性混沌映射(Piecewise Linear Chaotic Map, PWLCM)改善种群多样性,提高算法的求解精度和收敛...针对K-means聚类算法易受到初始聚类中心的影响且易陷入局部最优值的不足,提出一种基于改进蜣螂优化算法的K-means聚类算法。首先,引入分段线性混沌映射(Piecewise Linear Chaotic Map, PWLCM)改善种群多样性,提高算法的求解精度和收敛速度;其次,受鱼鹰算法位置识别和捕鱼策略的启发,使用其全局勘探策略替换蜣螂优化算法滚球阶段策略,可以弥补算法在滚球阶段中只依赖最差值,无法与其它蜣螂进行交流的缺点,从而增强算法的全局探索能力;然后,加入动态选择的自适应t分布扰动,增加全局开发以及局部搜索能力,通过CEC2017测试函数验证改进蜣螂优化算法的有效性和优越;最后,将改进后的蜣螂优化算法与K-means聚类算法相结合,从UCI数据集中选取6个真实的数据集与其他学者提出的群智能算法优化的K-means进行对比仿真实验,结果表明本文改进后的聚类算法具有更好的求解精度和鲁棒性。展开更多
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
文摘针对K-means聚类算法易受到初始聚类中心的影响且易陷入局部最优值的不足,提出一种基于改进蜣螂优化算法的K-means聚类算法。首先,引入分段线性混沌映射(Piecewise Linear Chaotic Map, PWLCM)改善种群多样性,提高算法的求解精度和收敛速度;其次,受鱼鹰算法位置识别和捕鱼策略的启发,使用其全局勘探策略替换蜣螂优化算法滚球阶段策略,可以弥补算法在滚球阶段中只依赖最差值,无法与其它蜣螂进行交流的缺点,从而增强算法的全局探索能力;然后,加入动态选择的自适应t分布扰动,增加全局开发以及局部搜索能力,通过CEC2017测试函数验证改进蜣螂优化算法的有效性和优越;最后,将改进后的蜣螂优化算法与K-means聚类算法相结合,从UCI数据集中选取6个真实的数据集与其他学者提出的群智能算法优化的K-means进行对比仿真实验,结果表明本文改进后的聚类算法具有更好的求解精度和鲁棒性。