A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The p...A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonl...The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonlinearity is incorporated into the model,and the constitutive equations are derived.The physical parameters of functionally graded materials(FGMs),which exhibit continuous variation across the thickness gradient,are of particular interest.The nonlinear magneto-thermoelastic governing equations are derived in accord with Hamilton's principle.The nonlinear partial differential equations are discretized with the Galerkin method,and the analytical expression of traveling wave frequencies is derived with an approximate method.The accuracy of the proposed method is validated through the comparison with the results from the literature and numerical solutions.Finally,the visualization analyses are conducted to examine the effects of key parameters on the traveling wave frequencies.The results show that the factors including the power-law index,temperature,magnetic field intensity,and rotating speed have the coupling effects with respect to the nonlinear vibration behavior.展开更多
The development of next-generation electromagnetic wave(EMW)absorbers requires a shift in interface design.By employing hierarchical work function programming,we propose an approach to tune interfacial polarization dy...The development of next-generation electromagnetic wave(EMW)absorbers requires a shift in interface design.By employing hierarchical work function programming,we propose an approach to tune interfacial polarization dynamics.This method utilizes multi-gradient work functions to guide carrier migration and polarization effectively,thereby enhancing energy dissipation under alternating electromagnetic fields.Here,we constructed a 1T/2H-MoS_(2)/PPy/VS_(2) composite absorber with integrated gradient interfaces.The composite achieved a powerful absorption(RLmin)of-58.59 dB at 2.3 mm,and an effective absorption bandwidth(EAB)of 7.44 GHz at 2.5 mm,demonstrating improved broadband absorption.Radar cross-section(RCS)simulations show an EMW loss of-7.2 dB m^(2) at 0°,highlighting its potential for stealth and communication applications.This study introduces hierarchical work function programming as a promising strategy in EMW absorber design,contributing to advancements in material performance and functionality.展开更多
In this paper, the wave propagation in functionally graded materials (FGM) is studied by the elastic wave theory based on thewave problems in homogeneous media. The auxiliary function and modulus function are introduc...In this paper, the wave propagation in functionally graded materials (FGM) is studied by the elastic wave theory based on thewave problems in homogeneous media. The auxiliary function and modulus function are introduced to construct the displacementfield and density function. The displacement field, modulus function, and density function are connected to proposea design theory of special FGM. An analytical method for elastic wave propagation in inhomogeneous media with varyingmodulus and density is derived to provide theoretical references for material design and dynamic stress analysis under elasticwaves. Taking the problem of dynamic stress concentration caused by shallow buried elliptical cavity in half space designedunder SH waves as an example, the calculation results are obtained and analyzed. The results show that the dynamic stressconcentration is sensitive to the change of the inhomogeneity of the medium.展开更多
For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functio...For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent;based on this we obtain a new formula for the k-point functions for the Volterra lattice hierarchy in terms of wave functions.As an application,we give an explicit formula of k-point functions for the even GUE(Gaussian Unitary Ensemble)correlators.展开更多
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j...Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
systematic verification and validation(V&V)of our previously proposed momentum source wave generation method is performed.Some settings of previous numerical wave tanks(NWTs)of regular and irregular waves have bee...systematic verification and validation(V&V)of our previously proposed momentum source wave generation method is performed.Some settings of previous numerical wave tanks(NWTs)of regular and irregular waves have been optimized.The H2-5 V&V method involving five mesh sizes with mesh refinement ratio being 1.225 is used to verify the NWT of regular waves,in which the wave height and mass conservation are mainly considered based on a Lv3(H s=0.75 m)and a Lv6(H s=5 m)regular wave.Additionally,eight different sea states are chosen to validate the wave height,mass conservation and wave frequency of regular waves.Regarding the NWT of irregular waves,five different sea states with significant wave heights ranging from 0.09 m to 12.5 m are selected to validate the statistical characteristics of irregular waves,including the profile of the wave spectrum,peak frequency and significant wave height.Results show that the verification errors for Lv3 and Lv6 regular wave on the most refined grid are−0.018 and−0.35 for wave height,respectively,and−0.14 and for−0.17 mass conservation,respectively.The uncertainty estimation analysis shows that the numerical error could be partially balanced out by the modelling error to achieve a smaller validation error by adjusting the mesh size elaborately.And the validation errors of the wave height,mass conservation and dominant frequency of regular waves under different sea states are no more than 7%,8% and 2%,respectively.For a Lv3(H_(s)=0.75 m)and a Lv6(H_(s)=5 m)regular wave,simulations are validated on the wave height in wave development section for safety factors FS≈1 and FS≈0.5-1,respectively.Regarding irregular waves,the validation errors of the significant wave height and peak frequency are both lower than 2%.展开更多
In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved ...In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.展开更多
BACKGROUND Cardiorespiratory fitness(CRF)is inversely associated with the risk of cardiovascular disease,which is related to impaired vascular function.However,its relationship with vascular function remains unknown i...BACKGROUND Cardiorespiratory fitness(CRF)is inversely associated with the risk of cardiovascular disease,which is related to impaired vascular function.However,its relationship with vascular function remains unknown in patients with type 2 diabetes.AIM To assess the relationship of CRF with vascular function in type 2 diabetes.METHODS Patients with type 2 diabetes who were aged≥18 years and underwent an incremental and symptom-limited exercise test were included.Vascular function was assessed by the construction of the vascular health index(VHI),which is defined as a composite score of ankle-brachial index,transcutaneous oxygen pressure,pulse wave velocity,and carotid intima-media thickness.Impaired vascular function is defined as a VHI of<8 points.Linear and logistic regression analyses were used to assess the associations.RESULTS We included 343 patients with type 2 diabetes.CRF was positively correlated with VHI(β=0.10,P=0.047),particularly with ankle-brachial index and pulse wave velocity.The odds ratio(OR)of impaired vascular function was 0.44[95%confidence interval(CI):0.20-0.96]for the highest vs the lowest CRF category.For each one metabolic equivalent increase in CRF,the OR of impaired vascular function was 0.73(95%CI:0.57-0.93).CONCLUSION Higher CRF was associated with better vascular function and lower odds of impaired vascular function in patients with type 2 diabetes.展开更多
Objective:To evaluate the effectiveness of cardiac rehabilitation therapy in the treatment of patients with chronic heart failure(CHF).Methods:76 patients with CHF who were treated in the hospital from January 2023 to...Objective:To evaluate the effectiveness of cardiac rehabilitation therapy in the treatment of patients with chronic heart failure(CHF).Methods:76 patients with CHF who were treated in the hospital from January 2023 to December 2024 were selected and randomly divided into two groups using a random number table.The experimental group(38 patients)received cardiac rehabilitation therapy,while the reference group(38 patients)received conventional drug therapy.The total effective rate,cardiac function indicators,lung function indicators,and pulse wave velocity(PWV)were compared between the two groups.Results:The total effective rate was higher in the experimental group than in the reference group.After treatment,the cardiac and lung function indicators were better in the experimental group than in the reference group,and the PWV was lower in the experimental group(P<0.05).Conclusion:Cardiac rehabilitation therapy for patients with CHF can improve treatment efficacy,enhance cardiopulmonary function,and regulate PWV levels,with high professionalism and feasibility.展开更多
New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates beca...New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates because of harsh weather,significantly affecting the maintenance procedures and reliability.Different types of failure rates of the wind turbine(WT)and wave energy converter(WEC),e.g.,the degradation and failure rates during regular wind speed fluctuation,the degradation and failure rates during intense wind speed fluctuation are considered.By incorporating both WT and WEC,the HWWPG system is designed to enhance the overall amount of electrical energy produced by the system over a given period under varying weather conditions.The universal generating function technique is used to calculate the HWWPG system dependability measures in a structured and efficient manner.This research highlights that intense weather conditions increase the failure rates of both WT and WEC,resulting in higher maintenance costs and more frequent downtimes,thus impacting the HWWPG system’s reliability.Although the HWWPG system can meet the energy demands in the presence of high failure rates,the reliance of the hybrid system on both WT and WEC helps maintain a relatively stable demand satisfaction during periods of high energy demand despite adverse weather conditions.To confirm the added value and applicability of the developed model,a case study of an offshore hybrid platform is conducted.The findings underscore the system’s robustness in maintaining energy production under varied weather conditions,though higher failure rates and maintenance costs arise in intense scenarios.展开更多
Surface irregularities,such as hills and ridges,can significantly amplify ground motion caused by earthquakes.Therefore,in this study,we propose an analytical solution model to investigate the interaction between an a...Surface irregularities,such as hills and ridges,can significantly amplify ground motion caused by earthquakes.Therefore,in this study,we propose an analytical solution model to investigate the interaction between an asymmetric triangular hill on Earth and SH waves.Firstly,based on the development of wave functions and regional matching techniques,we introduce a semi-circular artificial auxiliary boundary,dividing the solution model into a semi-infinite body containing a semi-circular depression and an asymmetric fan-shaped region.Secondly,we derive the domain function form applicable to solving asymmetric problems.Utilizing the theory of complex variables,we establish a well-posed matrix for solving domain functions within the same coordinate system.Numerical results demonstrate that the scattering of SH waves by a protuberance is jointly influenced by the geometric parameters of the hill and the angle of incidence.Additionally,the frequency of the incident wave also has a certain degree of impact on the displacement amplitude.This study elucidates the scattering mechanism of SH waves by complex boundaries,providing a theoretical reference for building site selection and seismic design.In practical problems,the asymmetric assumption is more applicable than the symmetry assumption.展开更多
In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described...In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described by four component nonlinear evolution equations(NLEEs).On the background of the Jacobian elliptic function,we obtain the admissible eigenvalues and the corresponding non-periodic eigenfunctions of the model spectrum problem.Then,with the help of the one-fold Darboux transformation and two-fold Darboux transformation,rogue waves on a dn-periodic background and cn-periodic background are derived,respectively.Finally,the corresponding complex dynamical properties and evolutions of the four components are illustrated graphically by choosing suitable parameters.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave ...Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency.展开更多
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater...In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.展开更多
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary ex...In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.展开更多
基金supported by the China National Postdoctoral Program for Innovative Talents(BX20200039)the Special Fund Project of“Mount Taishan Scholars”Construction Project in Shandong Province(ts20081130).
文摘A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金supported by the National Natural Science Foundation of China(No.12172321)。
文摘The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonlinearity is incorporated into the model,and the constitutive equations are derived.The physical parameters of functionally graded materials(FGMs),which exhibit continuous variation across the thickness gradient,are of particular interest.The nonlinear magneto-thermoelastic governing equations are derived in accord with Hamilton's principle.The nonlinear partial differential equations are discretized with the Galerkin method,and the analytical expression of traveling wave frequencies is derived with an approximate method.The accuracy of the proposed method is validated through the comparison with the results from the literature and numerical solutions.Finally,the visualization analyses are conducted to examine the effects of key parameters on the traveling wave frequencies.The results show that the factors including the power-law index,temperature,magnetic field intensity,and rotating speed have the coupling effects with respect to the nonlinear vibration behavior.
基金supported by the National Natural Science Foundation of China(Nos.22275156,52025132,21,621,091,52300138,22021001 and 22121001)the Fundamental Research Funds for the Central Universities of China(No.20720220019)+2 种基金the National Science Foundation of Fujian Province of China(No.2022J02059)the 111 Project(Nos.B17027,B16029)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The development of next-generation electromagnetic wave(EMW)absorbers requires a shift in interface design.By employing hierarchical work function programming,we propose an approach to tune interfacial polarization dynamics.This method utilizes multi-gradient work functions to guide carrier migration and polarization effectively,thereby enhancing energy dissipation under alternating electromagnetic fields.Here,we constructed a 1T/2H-MoS_(2)/PPy/VS_(2) composite absorber with integrated gradient interfaces.The composite achieved a powerful absorption(RLmin)of-58.59 dB at 2.3 mm,and an effective absorption bandwidth(EAB)of 7.44 GHz at 2.5 mm,demonstrating improved broadband absorption.Radar cross-section(RCS)simulations show an EMW loss of-7.2 dB m^(2) at 0°,highlighting its potential for stealth and communication applications.This study introduces hierarchical work function programming as a promising strategy in EMW absorber design,contributing to advancements in material performance and functionality.
基金supported by the National Natural Science Foundation of China(Grant No.12072085)the Natural Science Foundation of Heilongjiang Province of China(Grant No.ZD2021A001)the program for Innovative Research Team in China Earthquake Administration.
文摘In this paper, the wave propagation in functionally graded materials (FGM) is studied by the elastic wave theory based on thewave problems in homogeneous media. The auxiliary function and modulus function are introduced to construct the displacementfield and density function. The displacement field, modulus function, and density function are connected to proposea design theory of special FGM. An analytical method for elastic wave propagation in inhomogeneous media with varyingmodulus and density is derived to provide theoretical references for material design and dynamic stress analysis under elasticwaves. Taking the problem of dynamic stress concentration caused by shallow buried elliptical cavity in half space designedunder SH waves as an example, the calculation results are obtained and analyzed. The results show that the dynamic stressconcentration is sensitive to the change of the inhomogeneity of the medium.
基金supported by the National Key R and D Program of China(2020YFA0713100).
文摘For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent;based on this we obtain a new formula for the k-point functions for the Volterra lattice hierarchy in terms of wave functions.As an application,we give an explicit formula of k-point functions for the even GUE(Gaussian Unitary Ensemble)correlators.
基金supported by the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0306)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32)the National Natural Science Foundation of China(No.42174069).
文摘Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘systematic verification and validation(V&V)of our previously proposed momentum source wave generation method is performed.Some settings of previous numerical wave tanks(NWTs)of regular and irregular waves have been optimized.The H2-5 V&V method involving five mesh sizes with mesh refinement ratio being 1.225 is used to verify the NWT of regular waves,in which the wave height and mass conservation are mainly considered based on a Lv3(H s=0.75 m)and a Lv6(H s=5 m)regular wave.Additionally,eight different sea states are chosen to validate the wave height,mass conservation and wave frequency of regular waves.Regarding the NWT of irregular waves,five different sea states with significant wave heights ranging from 0.09 m to 12.5 m are selected to validate the statistical characteristics of irregular waves,including the profile of the wave spectrum,peak frequency and significant wave height.Results show that the verification errors for Lv3 and Lv6 regular wave on the most refined grid are−0.018 and−0.35 for wave height,respectively,and−0.14 and for−0.17 mass conservation,respectively.The uncertainty estimation analysis shows that the numerical error could be partially balanced out by the modelling error to achieve a smaller validation error by adjusting the mesh size elaborately.And the validation errors of the wave height,mass conservation and dominant frequency of regular waves under different sea states are no more than 7%,8% and 2%,respectively.For a Lv3(H_(s)=0.75 m)and a Lv6(H_(s)=5 m)regular wave,simulations are validated on the wave height in wave development section for safety factors FS≈1 and FS≈0.5-1,respectively.Regarding irregular waves,the validation errors of the significant wave height and peak frequency are both lower than 2%.
文摘In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.
基金Supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project,No.2024ZD0523303the Funding for Pairing Support to Jiangsu High-Level Hospitals-Zhongda Hospital,No.ZDLYG19the Key Research and Development Program in Jiangsu Province,No.BE2022828.
文摘BACKGROUND Cardiorespiratory fitness(CRF)is inversely associated with the risk of cardiovascular disease,which is related to impaired vascular function.However,its relationship with vascular function remains unknown in patients with type 2 diabetes.AIM To assess the relationship of CRF with vascular function in type 2 diabetes.METHODS Patients with type 2 diabetes who were aged≥18 years and underwent an incremental and symptom-limited exercise test were included.Vascular function was assessed by the construction of the vascular health index(VHI),which is defined as a composite score of ankle-brachial index,transcutaneous oxygen pressure,pulse wave velocity,and carotid intima-media thickness.Impaired vascular function is defined as a VHI of<8 points.Linear and logistic regression analyses were used to assess the associations.RESULTS We included 343 patients with type 2 diabetes.CRF was positively correlated with VHI(β=0.10,P=0.047),particularly with ankle-brachial index and pulse wave velocity.The odds ratio(OR)of impaired vascular function was 0.44[95%confidence interval(CI):0.20-0.96]for the highest vs the lowest CRF category.For each one metabolic equivalent increase in CRF,the OR of impaired vascular function was 0.73(95%CI:0.57-0.93).CONCLUSION Higher CRF was associated with better vascular function and lower odds of impaired vascular function in patients with type 2 diabetes.
基金Study on the Efficacy and Safety of Hyperbaric Oxygen Therapy Combined with Exercise in Improving Heart Rate Variability in Patients with Stable Chronic Cardiac Insufficiency(Project No.:2023-E-49)。
文摘Objective:To evaluate the effectiveness of cardiac rehabilitation therapy in the treatment of patients with chronic heart failure(CHF).Methods:76 patients with CHF who were treated in the hospital from January 2023 to December 2024 were selected and randomly divided into two groups using a random number table.The experimental group(38 patients)received cardiac rehabilitation therapy,while the reference group(38 patients)received conventional drug therapy.The total effective rate,cardiac function indicators,lung function indicators,and pulse wave velocity(PWV)were compared between the two groups.Results:The total effective rate was higher in the experimental group than in the reference group.After treatment,the cardiac and lung function indicators were better in the experimental group than in the reference group,and the PWV was lower in the experimental group(P<0.05).Conclusion:Cardiac rehabilitation therapy for patients with CHF can improve treatment efficacy,enhance cardiopulmonary function,and regulate PWV levels,with high professionalism and feasibility.
文摘New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates because of harsh weather,significantly affecting the maintenance procedures and reliability.Different types of failure rates of the wind turbine(WT)and wave energy converter(WEC),e.g.,the degradation and failure rates during regular wind speed fluctuation,the degradation and failure rates during intense wind speed fluctuation are considered.By incorporating both WT and WEC,the HWWPG system is designed to enhance the overall amount of electrical energy produced by the system over a given period under varying weather conditions.The universal generating function technique is used to calculate the HWWPG system dependability measures in a structured and efficient manner.This research highlights that intense weather conditions increase the failure rates of both WT and WEC,resulting in higher maintenance costs and more frequent downtimes,thus impacting the HWWPG system’s reliability.Although the HWWPG system can meet the energy demands in the presence of high failure rates,the reliance of the hybrid system on both WT and WEC helps maintain a relatively stable demand satisfaction during periods of high energy demand despite adverse weather conditions.To confirm the added value and applicability of the developed model,a case study of an offshore hybrid platform is conducted.The findings underscore the system’s robustness in maintaining energy production under varied weather conditions,though higher failure rates and maintenance costs arise in intense scenarios.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3003601)Joint Funds of the National Natural Science Foundation of China Project on Earthquake Science(Grant No.U2239252)the program of the Innovative Research Team in China Earthquake Administration.
文摘Surface irregularities,such as hills and ridges,can significantly amplify ground motion caused by earthquakes.Therefore,in this study,we propose an analytical solution model to investigate the interaction between an asymmetric triangular hill on Earth and SH waves.Firstly,based on the development of wave functions and regional matching techniques,we introduce a semi-circular artificial auxiliary boundary,dividing the solution model into a semi-infinite body containing a semi-circular depression and an asymmetric fan-shaped region.Secondly,we derive the domain function form applicable to solving asymmetric problems.Utilizing the theory of complex variables,we establish a well-posed matrix for solving domain functions within the same coordinate system.Numerical results demonstrate that the scattering of SH waves by a protuberance is jointly influenced by the geometric parameters of the hill and the angle of incidence.Additionally,the frequency of the incident wave also has a certain degree of impact on the displacement amplitude.This study elucidates the scattering mechanism of SH waves by complex boundaries,providing a theoretical reference for building site selection and seismic design.In practical problems,the asymmetric assumption is more applicable than the symmetry assumption.
基金supported by the National Natural Science Foundation of China(Grant No.12361052)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2414)+3 种基金the Fundamental Research Funds for the Inner Mongolia Normal University,China(Grant Nos.2022JBTD007,2022JBXC013)Graduate Students'Research and Innovation Fund of Inner Mongolia Autonomous Region(Grant No.B20231053Z)the Key Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application(Inner Mongolia Normal University),the Ministry of Education(Grant Nos.2023KFZR01,2023KFZR02)the First-Class Disciplines Project,Inner Mongolia Autonomous Region,China(Grant No.YLXKZX-NSD-001)。
文摘In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described by four component nonlinear evolution equations(NLEEs).On the background of the Jacobian elliptic function,we obtain the admissible eigenvalues and the corresponding non-periodic eigenfunctions of the model spectrum problem.Then,with the help of the one-fold Darboux transformation and two-fold Darboux transformation,rogue waves on a dn-periodic background and cn-periodic background are derived,respectively.Finally,the corresponding complex dynamical properties and evolutions of the four components are illustrated graphically by choosing suitable parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金supported by the National Earthquake Science Experiment in Sichuan and Yunnan Provinces of China(#2016 CESE 0201)National Natural Science Foundation of China(#41574034)China National Special Fund for Earthquake Scientific Research in Public Interest(#201508008)
文摘Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency.
基金The project supported by the National Natural Science Foundation of China(90405016,10572044)the Specialized Research Fund for the Doctoral Program of Higher Education(20040213034)
文摘In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.
基金Project supported by the National Natural Science Foundation of China (Nos.90405016 and 10572044)the Special Research Fund for the Doctoral Program of Higher Education (No.2004021334)
文摘In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.