An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those e...Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.展开更多
The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit e...The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data.Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data.Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.展开更多
The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound c...The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.展开更多
Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper...Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper. The authors put forward the modified ultimate resistance formulas on the basis of which the ultimate resistance formula is developed for horizontally loaded pile in multi-layer soil in consideration of the effect of the overburden soil pressure on the calculation of soil layer. It is significant to the correct application of the ultimate resistance formulas in API and ZCS Rules into offshore engineering.展开更多
The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration charact...The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness.展开更多
This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the c...This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accur...ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.展开更多
The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility...The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.展开更多
In order to smooth the trajectory of a robot and reduce dwell time,a transition curve is introduced between two adjacent curves in three-dimensional space.G2 continuity is guaranteed to transit smoothly.To minimize th...In order to smooth the trajectory of a robot and reduce dwell time,a transition curve is introduced between two adjacent curves in three-dimensional space.G2 continuity is guaranteed to transit smoothly.To minimize the amount of calculation,cubic and quartic Bezier curves are both analyzed.Furthermore,the contour curve is characterized by a transition parameter which defines the distance to the corner of the deviation.How to define the transition points for different curves is presented.A general move command interface is defined for receiving the curve limitations and transition parameters.Then,how to calculate the control points of the cubic and quartic Bezier curves is analyzed and given.Different situations are discussed separately,including transition between two lines,transition between a line and a circle,and transition between two circles.Finally,the experiments are carried out on a six degree of freedom(DOF) industrial robot to validate the proposed method.Results of single transition and multiple transitions are presented.The trajectories in the joint space are also analyzed.The results indicate that the method achieves G2 continuity within the transition constraint and has good efficiency and adaptability.展开更多
A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a grap...A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws.Subsequently,the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima's tests to obtain the best prediction.To estimate the FLC at elevated temperatures,tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature.FLCs at elevated temperatures could be established based on obtained ratios.However,the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al.A new method was proposed herein to improve the prediction of FLCs at elevated temperatures.An FLC calculated at room tem-perature was utilized to predict the failure of Nakazima's samples via finite element simulation.Based on the simulation results at room temperature,the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures.The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.展开更多
The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The gen...The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.展开更多
The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the sy...The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.展开更多
In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natura...In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.展开更多
Straight-and curved-bar refining plates are two important types of plates commonly used in disc refiners in the papermaking industry.Theoretically,the curved-bar refining plate has a relatively uniform bar interaction...Straight-and curved-bar refining plates are two important types of plates commonly used in disc refiners in the papermaking industry.Theoretically,the curved-bar refining plate has a relatively uniform bar interaction angle,which indicates uniform refining effects.The bar angle of the curved bar was proposed and two typical curved-bar plates,the three-stage radial curved-bar plate and isometric curved-bar plate,were designed in this paper.The arc equations of the curved-bar center line and curved-bar edges were established and finally,the specific edge load(SEL)of the curved-bar plate was derived.The determination of bar parameters was discussed,which provides a theoretical basis for the design of curved-bar plates.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the p...To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the pre-trained large language model,the Gaia significantly improved its ability in extracting sequential patterns and spatial features from well-log curves.Leveraging the adapter method for fine-tuning,this model required training only about 1/70 of its original parameters,greatly improving training efficiency.Comparative experiments,ablation experiments,and generalization experiments were designed and conducted using well-log data from 250 wells.In the comparative experiment,the Gaia model was benchmarked against cutting-edge small deep learning models and conventional large language models,demonstrating that the Gaia model reduced the mean absolute error(MAE)by at least 20%.In the ablation experiments,the synergistic effect of the Gaia model's multiple components was validated,with its MAE being at least 30%lower than that of single-component models.In the generalization experiments,the superior performance of the Gaia model in blind-well predictions was further confirmed.Compared to traditional models,the Gaia model is significantly superior in accuracy and generalization for logging curve reconstruction,fully showcasing the potential of large language models in the field of well-logging.This provides a new approach for future intelligent logging data processing.展开更多
Curved beams with complex geometries are vital in numerous engineering applications,where precise vibration analysis is crucial for ensuring safe and effective designs.Traditional finite element methods(FEMs) often st...Curved beams with complex geometries are vital in numerous engineering applications,where precise vibration analysis is crucial for ensuring safe and effective designs.Traditional finite element methods(FEMs) often struggle to accurately represent the dynamic characteristics of these structures due to the limitations in their shape function approximations.To overcome this challenge,the current study introduces an innovative finite element(FE)-based technique for the undamped vibrational analysis of curved beams with arbitrary curvature,employing explicitly derived interpolation functions.Initially,the exact interpolation functions are developed for circular are elements with the force method.These functions facilitate the creation of a highly accurate stiffness matrix,which is validated against the benchmark examples.To accommodate arbitrary curvature,a systematic transformation technique is established to approximate the intricate curves with a series of circular arcs.The numerical findings indicate that increasing the number of arc segments enhances accuracy,approaching the exact solutions.The analysis of free vibrations is conducted for both circular and non-circular beams.Mass matrices are derived using two methods:lumped mass and consistent mass,where the latter is based on the interpolation functions.The effectiveness of the proposed method is confirmed through the comparisons with the existing literature,demonstrating strong agreement.Finally,several practical cases involving beams with diverse curvature profiles are analyzed.Both natural frequencies and mode shapes are determined,providing significant insights into the dynamic behavior of these structures.This research offers a dependable and efficient analytical framework for the vibrational analysis of complex curved beams,with promising implications for structural and mechanical engineering.展开更多
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
基金Item Sponsored by National Natural Science Foundation of China(50271009)
文摘Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.
文摘The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data.Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data.Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.
文摘The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.
文摘Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper. The authors put forward the modified ultimate resistance formulas on the basis of which the ultimate resistance formula is developed for horizontally loaded pile in multi-layer soil in consideration of the effect of the overburden soil pressure on the calculation of soil layer. It is significant to the correct application of the ultimate resistance formulas in API and ZCS Rules into offshore engineering.
基金supported by the National Natural Science Foundation of China(No.51805341)the Natural Science Foundation of Jiangsu Province(No.BK20180843).
文摘The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness.
文摘This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1534209,51675446)Independent Subject of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
文摘ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.
基金supported by the National Natural Science Foundation of China(No.51475022)
文摘The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.
基金Supported by the National Natural Science Foundation of China(No.61573358)Research and Development of Large Multi-function Demolition Equipment in Disaster Site(No.2015BAK06B00)
文摘In order to smooth the trajectory of a robot and reduce dwell time,a transition curve is introduced between two adjacent curves in three-dimensional space.G2 continuity is guaranteed to transit smoothly.To minimize the amount of calculation,cubic and quartic Bezier curves are both analyzed.Furthermore,the contour curve is characterized by a transition parameter which defines the distance to the corner of the deviation.How to define the transition points for different curves is presented.A general move command interface is defined for receiving the curve limitations and transition parameters.Then,how to calculate the control points of the cubic and quartic Bezier curves is analyzed and given.Different situations are discussed separately,including transition between two lines,transition between a line and a circle,and transition between two circles.Finally,the experiments are carried out on a six degree of freedom(DOF) industrial robot to validate the proposed method.Results of single transition and multiple transitions are presented.The trajectories in the joint space are also analyzed.The results indicate that the method achieves G2 continuity within the transition constraint and has good efficiency and adaptability.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 107.02-2019.300.
文摘A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws.Subsequently,the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima's tests to obtain the best prediction.To estimate the FLC at elevated temperatures,tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature.FLCs at elevated temperatures could be established based on obtained ratios.However,the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al.A new method was proposed herein to improve the prediction of FLCs at elevated temperatures.An FLC calculated at room tem-perature was utilized to predict the failure of Nakazima's samples via finite element simulation.Based on the simulation results at room temperature,the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures.The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.
基金Project(2013BAF01B04) supported by the National Key Technology R&D Program during the Twelfth Five-year Plan of ChinaProject(51205425) supported by the National Natural Science Foundation of China
文摘The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.
基金This work was financially supported by National Natural Science Foundation of China through Grant 51778471Scientific Project of Education Department of Jiangxi Province GJJ160620Science and Technology Project of Communications Department of Jiangxi Province 2016C0006.
文摘The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.
文摘In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.
基金funding by the National Natural Science Foundation (Grant No. 50745048)
文摘Straight-and curved-bar refining plates are two important types of plates commonly used in disc refiners in the papermaking industry.Theoretically,the curved-bar refining plate has a relatively uniform bar interaction angle,which indicates uniform refining effects.The bar angle of the curved bar was proposed and two typical curved-bar plates,the three-stage radial curved-bar plate and isometric curved-bar plate,were designed in this paper.The arc equations of the curved-bar center line and curved-bar edges were established and finally,the specific edge load(SEL)of the curved-bar plate was derived.The determination of bar parameters was discussed,which provides a theoretical basis for the design of curved-bar plates.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
基金Supported by the National Natural Science Foundation of China(52288101)National Key R&D Program of China(2024YFF1500600)。
文摘To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the pre-trained large language model,the Gaia significantly improved its ability in extracting sequential patterns and spatial features from well-log curves.Leveraging the adapter method for fine-tuning,this model required training only about 1/70 of its original parameters,greatly improving training efficiency.Comparative experiments,ablation experiments,and generalization experiments were designed and conducted using well-log data from 250 wells.In the comparative experiment,the Gaia model was benchmarked against cutting-edge small deep learning models and conventional large language models,demonstrating that the Gaia model reduced the mean absolute error(MAE)by at least 20%.In the ablation experiments,the synergistic effect of the Gaia model's multiple components was validated,with its MAE being at least 30%lower than that of single-component models.In the generalization experiments,the superior performance of the Gaia model in blind-well predictions was further confirmed.Compared to traditional models,the Gaia model is significantly superior in accuracy and generalization for logging curve reconstruction,fully showcasing the potential of large language models in the field of well-logging.This provides a new approach for future intelligent logging data processing.
文摘Curved beams with complex geometries are vital in numerous engineering applications,where precise vibration analysis is crucial for ensuring safe and effective designs.Traditional finite element methods(FEMs) often struggle to accurately represent the dynamic characteristics of these structures due to the limitations in their shape function approximations.To overcome this challenge,the current study introduces an innovative finite element(FE)-based technique for the undamped vibrational analysis of curved beams with arbitrary curvature,employing explicitly derived interpolation functions.Initially,the exact interpolation functions are developed for circular are elements with the force method.These functions facilitate the creation of a highly accurate stiffness matrix,which is validated against the benchmark examples.To accommodate arbitrary curvature,a systematic transformation technique is established to approximate the intricate curves with a series of circular arcs.The numerical findings indicate that increasing the number of arc segments enhances accuracy,approaching the exact solutions.The analysis of free vibrations is conducted for both circular and non-circular beams.Mass matrices are derived using two methods:lumped mass and consistent mass,where the latter is based on the interpolation functions.The effectiveness of the proposed method is confirmed through the comparisons with the existing literature,demonstrating strong agreement.Finally,several practical cases involving beams with diverse curvature profiles are analyzed.Both natural frequencies and mode shapes are determined,providing significant insights into the dynamic behavior of these structures.This research offers a dependable and efficient analytical framework for the vibrational analysis of complex curved beams,with promising implications for structural and mechanical engineering.