High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse do...High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse domains,ranging from internet of things(IoT)to embodied artificial intelligence systems.Achieving high precision necessitates various circuit techniques including high-performance amplifiers and advanced calibration schemes.Furthermore,the evolution of ADC architectures has gradually elevated the significance of peripheral circuitry co-design in optimizing system-level performance metrics.In ISSCC 2025,several techniques are proposed to address these challenges.展开更多
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness...The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.展开更多
Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining ...Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score.展开更多
文摘High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse domains,ranging from internet of things(IoT)to embodied artificial intelligence systems.Achieving high precision necessitates various circuit techniques including high-performance amplifiers and advanced calibration schemes.Furthermore,the evolution of ADC architectures has gradually elevated the significance of peripheral circuitry co-design in optimizing system-level performance metrics.In ISSCC 2025,several techniques are proposed to address these challenges.
文摘The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.
基金supported by the Deanship of Scientific Research at the University of Tabuk through Research No.S-1443-0111.
文摘Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score.