期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles
1
作者 Aishwarya Rajasekar Vetriselvi Vetrian 《Computer Modeling in Engineering & Sciences》 2025年第4期225-254,共30页
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ap... The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively. 展开更多
关键词 internet of vehicles vehicular ad-hoc networks(VANET) multiaccess edge computing task offloading graph neural networks differential privacy
在线阅读 下载PDF
Personalized Aggregation Strategy for Hierarchical Federated Learning in Internet of Vehicles
2
作者 Shi Yan Liu Yujia +1 位作者 Tong Xiaolu Zhou Shukui 《China Communications》 2025年第8期314-331,共18页
In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide ef... In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance. 展开更多
关键词 aggregation strategy internet of vehicles non-IID personalized federated learning vehicle mobility
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
3
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading internet of vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
Optimizing System Latency for Blockchain-Encrypted Edge Computing in Internet of Vehicles
4
作者 Cui Zhang Maoxin Ji +2 位作者 Qiong Wu Pingyi Fan Qiang Fan 《Computers, Materials & Continua》 2025年第5期3519-3536,共18页
As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expo... As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems. 展开更多
关键词 Blockchain edge computing internet of vehicles latency optimization
在线阅读 下载PDF
Computation Offloading in Edge Computing for Internet of Vehicles via Game Theory 被引量:2
5
作者 Jianhua Liu Jincheng Wei +3 位作者 Rongxin Luo Guilin Yuan Jiajia Liu Xiaoguang Tu 《Computers, Materials & Continua》 SCIE EI 2024年第10期1337-1361,共25页
With the rapid advancement of Internet of Vehicles(IoV)technology,the demands for real-time navigation,advanced driver-assistance systems(ADAS),vehicle-to-vehicle(V2V)and vehicle-to-infrastructure(V2I)communications,a... With the rapid advancement of Internet of Vehicles(IoV)technology,the demands for real-time navigation,advanced driver-assistance systems(ADAS),vehicle-to-vehicle(V2V)and vehicle-to-infrastructure(V2I)communications,and multimedia entertainment systems have made in-vehicle applications increasingly computingintensive and delay-sensitive.These applications require significant computing resources,which can overwhelm the limited computing capabilities of vehicle terminals despite advancements in computing hardware due to the complexity of tasks,energy consumption,and cost constraints.To address this issue in IoV-based edge computing,particularly in scenarios where available computing resources in vehicles are scarce,a multi-master and multi-slave double-layer game model is proposed,which is based on task offloading and pricing strategies.The establishment of Nash equilibrium of the game is proven,and a distributed artificial bee colonies algorithm is employed to achieve game equilibrium.Our proposed solution addresses these bottlenecks by leveraging a game-theoretic approach for task offloading and resource allocation in mobile edge computing(MEC)-enabled IoV environments.Simulation results demonstrate that the proposed scheme outperforms existing solutions in terms of convergence speed and system utility.Specifically,the total revenue achieved by our scheme surpasses other algorithms by at least 8.98%. 展开更多
关键词 Edge computing internet of vehicles resource allocation game theory artificial bee colony algorithm
在线阅读 下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
6
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing internet of vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
在线阅读 下载PDF
A credibility-aware swarm-federated deep learning framework in internet of vehicles 被引量:1
7
作者 Zhe Wang Xinhang Li +2 位作者 Tianhao Wu Chen Xu Lin Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第1期150-157,共8页
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead... Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations. 展开更多
关键词 Swarm learning Federated deep learning internet of vehicles PRIVACY EFFICIENCY
在线阅读 下载PDF
Survey on digital twins for Internet of Vehicles:Fundamentals,challenges,and opportunities 被引量:1
8
作者 Jiajie Guo Muhammad Bilal +3 位作者 Yuying Qiu Cheng Qian Xiaolong Xu Kim-Kwang Raymond Choo 《Digital Communications and Networks》 SCIE CSCD 2024年第2期237-247,共11页
As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There hav... As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There have been attempts to utilize Digital Twins(DTs)to facilitate the design,evaluation,and deployment of IoV-based systems,for example by supporting high-fidelity modeling,real-time monitoring,and advanced predictive capabilities.However,the literature review undertaken in this paper suggests that integrating DTs into IoV-based system design and deployment remains an understudied topic.In addition,this paper explains how DTs can benefit IoV system designers and implementers,as well as describes several challenges and opportunities for future researchers. 展开更多
关键词 internet of vehicles Digital twin Simulation Traffic systems
在线阅读 下载PDF
DAG-based swarm learning:A secure asynchronous learning framework for Internet of Vehicles 被引量:1
9
作者 Xiaoge Huang Hongbo Yin +2 位作者 Qianbin Chen Yu Zeng Jianfeng Yao 《Digital Communications and Networks》 CSCD 2024年第6期1611-1621,共11页
To provide diversified services in the intelligent transportation systems,smart vehicles will generate unprecedented amounts of data every day.Due to data security and user privacy issues,Federated Learning(FL)is cons... To provide diversified services in the intelligent transportation systems,smart vehicles will generate unprecedented amounts of data every day.Due to data security and user privacy issues,Federated Learning(FL)is considered a potential solution to ensure privacy-preserving in data sharing.However,there are still many challenges to applying the traditional synchronous FL directly in the Internet of Vehicles(Io V),such as unreliable communications and malicious attacks.In this paper,we propose a Directed Acyclic Graph(DAG)based Swarm Learning(DSL),which integrates edge computing,FL,and blockchain technologies to provide secure data sharing and model training in Io Vs.To deal with the high mobility of vehicles,the dynamic vehicle association algorithm is introduced,which could optimize the connections between vehicles and road side units to improve the training efficiency.Moreover,to enhance the anti-attack property of the DSL algorithm,a malicious attack detection method is adopted,which could recognize malicious vehicles by the site confirmation rate.Furthermore,an accuracy-based reward mechanism is developed to promote vehicles to participate in the model training with honest behaviors.Finally,simulation results demonstrate that the proposed DSL algorithm could achieve better performance in terms of model accuracy,convergence rates and security compared with existing algorithms. 展开更多
关键词 Direct acyclic graph internet of vehicles Swarm learning Asynchronous learning
在线阅读 下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
10
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 internet of vehicles road networks 3D road model structure recognition GIS
在线阅读 下载PDF
Blockchain-Enabled Federated Learning with Differential Privacy for Internet of Vehicles
11
作者 Chi Cui Haiping Du +2 位作者 Zhijuan Jia Yuchu He Lipeng Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1581-1593,共13页
The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the ... The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the capability to make intelligent decisions.As a distributed learning paradigm,federated learning(FL)has emerged as a preferred solution in IoV.Compared to traditional centralized machine learning,FL reduces communication overhead and improves privacy protection.Despite these benefits,FL still faces some security and privacy concerns,such as poisoning attacks and inference attacks,prompting exploration into blockchain integration to enhance its security posture.This paper introduces a novel blockchain-enabled federated learning(BCFL)scheme with differential privacy(DP)tailored for IoV.In order to meet the performance demanding IoV environment,the proposed methodology integrates a consortium blockchain with Practical Byzantine Fault Tolerance(PBFT)consensus,which offers superior efficiency over the conventional public blockchains.In addition,the proposed approach utilizes the Differentially Private Stochastic Gradient Descent(DP-SGD)algorithm in the local training process of FL for enhanced privacy protection.Experiment results indicate that the integration of blockchain elevates the security level of FL in that the proposed approach effectively safeguards FL against poisoning attacks.On the other hand,the additional overhead associated with blockchain integration is also limited to a moderate level to meet the efficiency criteria of IoV.Furthermore,by incorporating DP,the proposed approach is shown to have the(ε-δ)privacy guarantee while maintaining an acceptable level of model accuracy.This enhancement effectively mitigates the threat of inference attacks on private information. 展开更多
关键词 Blockchain federated learning differential privacy internet of vehicles
在线阅读 下载PDF
Deep Transfer Learning Techniques in Intrusion Detection System-Internet of Vehicles: A State-of-the-Art Review
12
作者 Wufei Wu Javad Hassannataj Joloudari +8 位作者 Senthil Kumar Jagatheesaperumal Kandala N.V.P.SRajesh Silvia Gaftandzhieva Sadiq Hussain Rahimullah Rabih Najibullah Haqjoo Mobeen Nazar Hamed Vahdat-Nejad Rositsa Doneva 《Computers, Materials & Continua》 SCIE EI 2024年第8期2785-2813,共29页
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide... The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks. 展开更多
关键词 Cyber-attacks internet of things internet of vehicles intrusion detection system
在线阅读 下载PDF
Blockchain-Based Message Authentication Scheme for Internet of Vehicles in an Edge Computing Environment
13
作者 Qiping Zou Zhong Ruan Huaning Song 《Computer Systems Science & Engineering》 2024年第5期1301-1328,共28页
As an important application of intelligent transportation system,Internet of Vehicles(IoV)provides great convenience for users.Users can obtain real-time traffic conditions through the IoV’s services,plan users’trav... As an important application of intelligent transportation system,Internet of Vehicles(IoV)provides great convenience for users.Users can obtain real-time traffic conditions through the IoV’s services,plan users’travel routes,and improve travel efficiency.However,in the IoV system,there are always malicious vehicle nodes publishing false information.Therefore,it is essential to ensure the legitimacy of the source.In addition,during the peak period of vehicle travel,the vehicle releases a large number of messages,and IoV authentication efficiency is prone to performance bottlenecks.Most existing authentication schemes have the problem of low authentication efficiency in the scenario.To address the above problems,this paper designs a novel reliable anonymous authentication scheme in IoV for Rush-hour Traffic.Here,our scheme uses blockchain and elliptic curve cryptography(ECC)to design authentication algorithms for message authentication between vehicles and roadside units(RSU).Additionally,we introduce the idea of edge computing into the scheme,RSU will select themost suitable vehicle as the edge computing node for message authentication.In addition,we used the ProVerif tool for Internet security protocols and applications to test its security,ensuring that it is secure under different network attacks.In the simulation experiment,we compare our scheme with other existing works.Our scheme has a significant improvement in computational overhead,authentication efficiency and packet loss rate,and is suitable for traffic scenarios with large message volume. 展开更多
关键词 internet of vehicles messages authentication edge computing blockchain elliptic curve cryptography
在线阅读 下载PDF
Digital twin empowered lightweight and efficient blockchain for dynamic internet of vehicles
14
作者 Haoye Chai Supeng Leng +1 位作者 Jianhua He Ke Zhang 《Digital Communications and Networks》 CSCD 2024年第6期1698-1707,共10页
The Internet of Vehicles(Io V)has great potential for Intelligent Transportation Systems(ITS),enabling interactive vehicle applications,such as advanced driving and infotainment.It is crucial to ensure the reliability... The Internet of Vehicles(Io V)has great potential for Intelligent Transportation Systems(ITS),enabling interactive vehicle applications,such as advanced driving and infotainment.It is crucial to ensure the reliability during the vehicle-to-vehicle interaction process.Although the emerging blockchain has superiority in handling security-related issues,existing blockchain-based schemes show weakness in highly dynamic Io V.Both the transaction broadcast and consensus process require multiple rounds of communication throughout the whole network,while the high relative speed between vehicles and dynamic topology resulting in the intermittent connections will degrade the efficiency of blockchain.In this paper,we propose a Digital Twin(DT)-enabled blockchain framework for dynamic Io V,which aims to reduce both the communication cost and the operational latency of blockchain.To address the dynamic context,we propose a DT construction strategy that jointly considers the DT migration and blockchain computing consumption.Moreover,a communication-efficient Local Perceptual Multi-Agent Deep Deterministic Policy Gradient(LPMA-DDPG)algorithm is designed to execute the DT construction strategy among edge servers in a decentralized manner.The simulation results show that the proposed framework can greatly reduce the communication cost,while achieving good security performance.The dynamic DT construction strategy shows superiority in operation latency compared with benchmark strategies.The decentralized LPMA-DDPG algorithm is helpful for implementing the optimal DT construction strategy in practical ITS. 展开更多
关键词 Digital twin Blockchain internet of vehicles Multi-agent DDPG
在线阅读 下载PDF
An Overview of Internet of Vehicles 被引量:62
15
作者 YANGFangchun WANG Shangguang LI Jinglin LIU Zhihan SUN Qibo 《China Communications》 SCIE CSCD 2014年第10期1-15,共15页
The new era of the Internet of Things is driving the evolution of conventional Vehicle Ad-hoc Networks into the lnternet of Vehicles (IoV). With the rapid development of computation and communication technologies, l... The new era of the Internet of Things is driving the evolution of conventional Vehicle Ad-hoc Networks into the lnternet of Vehicles (IoV). With the rapid development of computation and communication technologies, loV promises huge commercial interest and research value, thereby attracting a large number of companies and researchers. This paper proposes an abstract network model of the IoV, discusses the technologies required to create the IoV, presents different applications based on certain currently existing technologies, provides several open research challenges and describes essential future research in the area of loV. 展开更多
关键词 internet of vehicles VANET vehicle telematics network model
在线阅读 下载PDF
A Novel Load Balancing Strategy of Software-Defined Cloud/Fog Networking in the Internet of Vehicles 被引量:13
16
作者 Xiuli He Zhiyuan Ren +1 位作者 Chenhua Shi Jian Fang 《China Communications》 SCIE CSCD 2016年第S2期140-149,共10页
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ... The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture. 展开更多
关键词 internet of vehicles cloud computing cloud/fog network software defined networking load balancing
在线阅读 下载PDF
MADCR:Mobility Aware Dynamic Clustering-Based Routing Protocol in Internet of Vehicles 被引量:9
17
作者 Sankar Sennan Somula Ramasubbareddy +3 位作者 Sathiyabhama Balasubramaniyam Anand Nayyar Chaker Abdelaziz Kerrache Muhammad Bilal 《China Communications》 SCIE CSCD 2021年第7期69-85,共17页
Internet of Vehicles(IoV)is an evolution of the Internet of Things(IoT)to improve the capabilities of vehicular ad-hoc networks(VANETs)in intelligence transport systems.The network topology in IoV paradigm is highly d... Internet of Vehicles(IoV)is an evolution of the Internet of Things(IoT)to improve the capabilities of vehicular ad-hoc networks(VANETs)in intelligence transport systems.The network topology in IoV paradigm is highly dynamic.Clustering is one of the promising solutions to maintain the route stability in the dynamic network.However,existing algorithms consume a considerable amount of time in the cluster head(CH)selection process.Thus,this study proposes a mobility aware dynamic clustering-based routing(MADCR)protocol in IoV to maximize the lifespan of networks and reduce the end-to-end delay of vehicles.The MADCR protocol consists of cluster formation and CH selection processes.A cluster is formed on the basis of Euclidean distance.The CH is then chosen using the mayfly optimization algorithm(MOA).The CH subsequently receives vehicle data and forwards such data to the Road Side Unit(RSU).The performance of the MADCR protocol is compared with that ofAnt Colony Optimization(ACO),Comprehensive Learning Particle Swarm Optimization(CLPSO),and Clustering Algorithm for Internet of Vehicles based on Dragonfly Optimizer(CAVDO).The proposed MADCR protocol decreases the end-toend delay by 5–80 ms and increases the packet delivery ratio by 5%–15%. 展开更多
关键词 clustering protocol internet of things internet of vehicles optimization algorithm Mayfly algorithm
在线阅读 下载PDF
A Federated Bidirectional Connection Broad Learning Scheme for Secure Data Sharing in Internet of Vehicles 被引量:7
18
作者 Xiaoming Yuan Jiahui Chen +2 位作者 Ning Zhang Xiaojie Fang Didi Liu 《China Communications》 SCIE CSCD 2021年第7期117-133,共17页
Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliabil... Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliability and efficiency of data sharing need to be further enhanced.Federated learning allows the server to exchange parameters without obtaining private data from clients so that the privacy is protected.Broad learning system is a novel artificial intelligence technology that can improve training efficiency of data set.Thus,we propose a federated bidirectional connection broad learning scheme(FeBBLS)to solve the data sharing issues.Firstly,we adopt the bidirectional connection broad learning system(BiBLS)model to train data set in vehicular nodes.The server aggregates the collected parameters of BiBLS from vehicular nodes through the federated broad learning system(FedBLS)algorithm.Moreover,we propose a clustering FedBLS algorithm to offload the data sharing into clusters for improving the aggregation capability of the model.Some simulation results show our scheme can improve the efficiency and prediction accuracy of data sharing and protect the privacy of data sharing. 展开更多
关键词 federated learning broad learning system deep learning internet of vehicles data privacy
在线阅读 下载PDF
A blockchain-based trustworthy collaborative power trading scheme for 5G-enabled social internet of vehicles 被引量:6
19
作者 Ziming Liu Yang Xu +2 位作者 Cheng Zhang Haroon Elahi Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第6期976-983,共8页
Social Internet of Vehicles(SIoV)falls under the umbrella of social Internet of Things(IoT),where vehicles are socially connected to other vehicles and roadside units that can reliably share information and services w... Social Internet of Vehicles(SIoV)falls under the umbrella of social Internet of Things(IoT),where vehicles are socially connected to other vehicles and roadside units that can reliably share information and services with other social entities by leveraging the capabilities of 5G technology,which brings new opportunities and challenges,e.g.,collaborative power trading can address the mileage anxiety of electric vehicles.However,it relies on a trusted central party for scheduling,which introduces performance bottlenecks and cannot be set up in a distributed network,in addition,the lack of transparency in state-of-the-art Vehicle-to-Vehicle(V2V)power trading schemes can introduce further trust issues.In this paper,we propose a blockchain-based trustworthy collaborative power trading scheme for 5G-enabled social vehicular networks that uses a distributed market mechanism to introduce trusted power trading and avoids the dependence on a centralized dispatch center.Based on the game theory,we design the pricing and trading matching mechanism for V2V power trading to obtain maximum social welfare.We use blockchain to record power trading data for trusted pricing and use smart contracts for transaction matching.The simulation results verify the effectiveness of the proposed scheme in improving social welfare and reducing the load on the grid. 展开更多
关键词 Social internet of vehicles Bl ockchain Collaborative power trading Vehicle-to-vehicle charging 5G
在线阅读 下载PDF
Privacy Protection Algorithm for the Internet of Vehicles Based on Local Differential Privacy and Game Model 被引量:5
20
作者 Wenxi Han Mingzhi Cheng +3 位作者 Min Lei Hanwen Xu Yu Yang Lei Qian 《Computers, Materials & Continua》 SCIE EI 2020年第8期1025-1038,共14页
In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protectio... In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV. 展开更多
关键词 The internet of vehicles privacy protection local differential privacy location semantic inference attack game theory
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部