Internet of Things (IoT) has become a prevalent topic in the world of technology. It helps billion of devices to connect to the internet so that they can exchange data with each other. Nowadays, the IoT can be applied...Internet of Things (IoT) has become a prevalent topic in the world of technology. It helps billion of devices to connect to the internet so that they can exchange data with each other. Nowadays, the IoT can be applied in anything, from cellphones, coffee makers, cars, body sensors to smart surveillance, water distribution, energy management system, and environmental monitoring. However, the rapid growth of IoT has brought new and critical threats to the security and privacy of the users. Due to the millions of insecure IoT devices, an adversary can easily break into an application to make it unstable and steal sensitive user information and data. This paper provides an overview of different kinds of cybersecurity attacks against IoT devices as well as an analysis of IoT architecture. It then discusses the security solutions we can take to protect IoT devices against different kinds of security attacks. The main goal of this research is to enhance the development of IoT research by highlighting the different kinds of security challenges that IoT is facing nowadays, and the existing security solutions we can implement to make IoT devices more secure. In this study, we analyze the security solutions of IoT in three forms: secure authentication, secure communications, and application security to find suitable security solutions for protecting IoT devices.展开更多
We introduce a novel model for robustness of complex with a tunable attack information parameter. The random failure and intentional attack known are the two extreme cases of our model. Based on the model, we study th...We introduce a novel model for robustness of complex with a tunable attack information parameter. The random failure and intentional attack known are the two extreme cases of our model. Based on the model, we study the robustness of complex networks under random information and preferential information, respectively. Using the generating function method, we derive the exact value of the critical removal fraction of nodes for the disintegration of networks and the size of the giant component. We show that hiding just a small fraction of nodes randomly can prevent a scale-free network from collapsing and detecting just a small fraction of nodes preferentially can destroy a scale-free network.展开更多
With the increase in the number of computers connected to Internet, the number of Distributed Denial of Service (DDoS) attacks has also been increasing. A DDoS attack consumes the computing resources of a computer or ...With the increase in the number of computers connected to Internet, the number of Distributed Denial of Service (DDoS) attacks has also been increasing. A DDoS attack consumes the computing resources of a computer or a server, by degrading its computing performance or by preventing legitimate users from accessing its services. Recently, Operating Systems (OS) are increasingly deploying embedded DDoS prevention schemes to prevent computing exhaustion caused by such attacks. In this paper, we compare the effectiveness of two popular operating systems, namely the Apple’s Lion and Microsoft’s Windows 7, against DDoS attacks. We compare the computing performance of these operating systems under two ICMP based DDoS attacks. Since the role of the OS is to manage the computer or servers resources as efficiently as possible, in this paper we investigate which OS manages its computing resources more efficiently. In this paper, we evaluate and compare the built-in security of these two operating systems by using an iMac computer which is capable of running both Windows 7 and Lion. The DDoS attacks that are simulated for this paper are the ICMP Ping and Land Attack. For this experiment, we measure the exhaustion of the processors and the number of Echo Request and Echo Reply messages that were generated under varying attack loads for both the Ping and Land Attack. From our experiments, we found that both operating systems were able to survive the attacks however they reacted a bit differently under attack. The Operating System Lion was handling both the Ping and Land attack in the exactly the same way, whereas Windows 7 handled the two attacks a bit differently, resulting in different processor consumptions by two different operating systems.展开更多
Due to the long-term goal of bringing about significant changes in the quality of services supplied to smart city residents and urban environments and life, the development and deployment of ICT in city infrastructure...Due to the long-term goal of bringing about significant changes in the quality of services supplied to smart city residents and urban environments and life, the development and deployment of ICT in city infrastructure has spurred interest in smart cities. Applications for smart cities can gather private data in a variety of fields. Different sectors such as healthcare, smart parking, transportation, traffic systems, public safety, smart agriculture, and other sectors can control real-life physical objects and deliver intelligent and smart information to citizens who are the users. However, this smart ICT integration brings about numerous concerns and issues with security and privacy for both smart city citizens and the environments they are built in. The main uses of smart cities are examined in this journal article, along with the security needs for IoT systems supporting them and the identified important privacy and security issues in the smart city application architecture. Following the identification of several security flaws and privacy concerns in the context of smart cities, it then highlights some security and privacy solutions for developing secure smart city systems and presents research opportunities that still need to be considered for performance improvement in the future.展开更多
Internet of Things (IoT) networks present unique cybersecurity challenges due to their distributed and heterogeneous nature. Our study explores the effectiveness of two types of deep learning models, long-term memory ...Internet of Things (IoT) networks present unique cybersecurity challenges due to their distributed and heterogeneous nature. Our study explores the effectiveness of two types of deep learning models, long-term memory neural networks (LSTMs) and deep neural networks (DNNs), for detecting attacks in IoT networks. We evaluated the performance of six hybrid models combining LSTM or DNN feature extractors with classifiers such as Random Forest, k-Nearest Neighbors and XGBoost. The LSTM-RF and LSTM-XGBoost models showed lower accuracy variability in the face of different types of attack, indicating greater robustness. The LSTM-RF and LSTM-XGBoost models show variability in results, with accuracies between 58% and 99% for attack types, while LSTM-KNN has higher but more variable accuracies, between 72% and 99%. The DNN-RF and DNN-XGBoost models show lower variability in their results, with accuracies between 59% and 99%, while DNN-KNN has higher but more variable accuracies, between 71% and 99%. LSTM-based models are proving to be more effective for detecting attacks in IoT networks, particularly for sophisticated attacks. However, the final choice of model depends on the constraints of the application, taking into account a trade-off between accuracy and complexity.展开更多
针对车联网中拒绝服务(denial of service,DoS)攻击难以防范且现有监督学习方法无法有效检测零日攻击的问题,提出了一种混合DoS攻击入侵检测系统.首先,对数据集进行预处理,提高数据的质量;其次,利用特征选择滤除冗余特征,旨在获得代表...针对车联网中拒绝服务(denial of service,DoS)攻击难以防范且现有监督学习方法无法有效检测零日攻击的问题,提出了一种混合DoS攻击入侵检测系统.首先,对数据集进行预处理,提高数据的质量;其次,利用特征选择滤除冗余特征,旨在获得代表性更强的特征;再次,采用集成学习方法将5种基于树结构的监督分类器堆叠集成用于检测已知DoS攻击;最后,提出了一种无监督异常检测方法,将卷积去噪自动编码器与注意力机制相结合来建立正常行为模型,用于检测堆叠集成模型漏报的未知DoS攻击.实验结果表明,对于已知DoS攻击检测,所提系统在Car-Hacking数据集和CICIDS2017数据集上的检测准确率分别为100%和99.967%;对于未知DoS攻击检测,所提系统在上述两个数据集上的检测准确率分别为100%和83.953%,并且在两个数据集上的平均测试时间分别为0.072 ms和0.157 ms,验证了所提系统的有效性和可行性.展开更多
在分布式物联网的大规模应用背景下,各实体设备中密码技术作为信息安全的底层支撑架构,正面临着侧信道攻击(SCA)这一物理层安全威胁的严峻挑战. SM4分组密码算法作为我国自主研制的商用密码算法标准,已深度集成于分布式物联网安全协议中...在分布式物联网的大规模应用背景下,各实体设备中密码技术作为信息安全的底层支撑架构,正面临着侧信道攻击(SCA)这一物理层安全威胁的严峻挑战. SM4分组密码算法作为我国自主研制的商用密码算法标准,已深度集成于分布式物联网安全协议中,但其实现层面的侧信道脆弱性问题亟待解决.针对SM4密钥扩展算法的侧信道攻击研究存在空白,现有攻击方法多依赖多能迹统计特性,而单能迹攻击研究匮乏.研究提出一种基于贝叶斯网络结合建模侧信道攻击的单能迹侧信道攻击方法,针对单条能量轨迹,通过构建概率图模型,结合置信传播算法,实现对轮子密钥的高效推测,进而恢复主密钥.仿真实验与实测实验表明该攻击方法有效,在理想实测环境下主密钥恢复成功率达85.74%,即使在实测能迹中添加大量高斯白噪声,使得信噪比仅为10 d B的条件下,成功率仍可达70%.与传统方法相比,所提方法在成功率、所需能量轨迹数量和攻击时间等方面优势显著,为分布式物联网系统含密设备的侧信道攻击研究提供了新的思路与技术手段,也为相关防护设计提供了理论依据和参考.展开更多
文摘Internet of Things (IoT) has become a prevalent topic in the world of technology. It helps billion of devices to connect to the internet so that they can exchange data with each other. Nowadays, the IoT can be applied in anything, from cellphones, coffee makers, cars, body sensors to smart surveillance, water distribution, energy management system, and environmental monitoring. However, the rapid growth of IoT has brought new and critical threats to the security and privacy of the users. Due to the millions of insecure IoT devices, an adversary can easily break into an application to make it unstable and steal sensitive user information and data. This paper provides an overview of different kinds of cybersecurity attacks against IoT devices as well as an analysis of IoT architecture. It then discusses the security solutions we can take to protect IoT devices against different kinds of security attacks. The main goal of this research is to enhance the development of IoT research by highlighting the different kinds of security challenges that IoT is facing nowadays, and the existing security solutions we can implement to make IoT devices more secure. In this study, we analyze the security solutions of IoT in three forms: secure authentication, secure communications, and application security to find suitable security solutions for protecting IoT devices.
基金Supported by the National Natural Science Foundation of China under Grant No 70501032.
文摘We introduce a novel model for robustness of complex with a tunable attack information parameter. The random failure and intentional attack known are the two extreme cases of our model. Based on the model, we study the robustness of complex networks under random information and preferential information, respectively. Using the generating function method, we derive the exact value of the critical removal fraction of nodes for the disintegration of networks and the size of the giant component. We show that hiding just a small fraction of nodes randomly can prevent a scale-free network from collapsing and detecting just a small fraction of nodes preferentially can destroy a scale-free network.
文摘With the increase in the number of computers connected to Internet, the number of Distributed Denial of Service (DDoS) attacks has also been increasing. A DDoS attack consumes the computing resources of a computer or a server, by degrading its computing performance or by preventing legitimate users from accessing its services. Recently, Operating Systems (OS) are increasingly deploying embedded DDoS prevention schemes to prevent computing exhaustion caused by such attacks. In this paper, we compare the effectiveness of two popular operating systems, namely the Apple’s Lion and Microsoft’s Windows 7, against DDoS attacks. We compare the computing performance of these operating systems under two ICMP based DDoS attacks. Since the role of the OS is to manage the computer or servers resources as efficiently as possible, in this paper we investigate which OS manages its computing resources more efficiently. In this paper, we evaluate and compare the built-in security of these two operating systems by using an iMac computer which is capable of running both Windows 7 and Lion. The DDoS attacks that are simulated for this paper are the ICMP Ping and Land Attack. For this experiment, we measure the exhaustion of the processors and the number of Echo Request and Echo Reply messages that were generated under varying attack loads for both the Ping and Land Attack. From our experiments, we found that both operating systems were able to survive the attacks however they reacted a bit differently under attack. The Operating System Lion was handling both the Ping and Land attack in the exactly the same way, whereas Windows 7 handled the two attacks a bit differently, resulting in different processor consumptions by two different operating systems.
文摘Due to the long-term goal of bringing about significant changes in the quality of services supplied to smart city residents and urban environments and life, the development and deployment of ICT in city infrastructure has spurred interest in smart cities. Applications for smart cities can gather private data in a variety of fields. Different sectors such as healthcare, smart parking, transportation, traffic systems, public safety, smart agriculture, and other sectors can control real-life physical objects and deliver intelligent and smart information to citizens who are the users. However, this smart ICT integration brings about numerous concerns and issues with security and privacy for both smart city citizens and the environments they are built in. The main uses of smart cities are examined in this journal article, along with the security needs for IoT systems supporting them and the identified important privacy and security issues in the smart city application architecture. Following the identification of several security flaws and privacy concerns in the context of smart cities, it then highlights some security and privacy solutions for developing secure smart city systems and presents research opportunities that still need to be considered for performance improvement in the future.
文摘Internet of Things (IoT) networks present unique cybersecurity challenges due to their distributed and heterogeneous nature. Our study explores the effectiveness of two types of deep learning models, long-term memory neural networks (LSTMs) and deep neural networks (DNNs), for detecting attacks in IoT networks. We evaluated the performance of six hybrid models combining LSTM or DNN feature extractors with classifiers such as Random Forest, k-Nearest Neighbors and XGBoost. The LSTM-RF and LSTM-XGBoost models showed lower accuracy variability in the face of different types of attack, indicating greater robustness. The LSTM-RF and LSTM-XGBoost models show variability in results, with accuracies between 58% and 99% for attack types, while LSTM-KNN has higher but more variable accuracies, between 72% and 99%. The DNN-RF and DNN-XGBoost models show lower variability in their results, with accuracies between 59% and 99%, while DNN-KNN has higher but more variable accuracies, between 71% and 99%. LSTM-based models are proving to be more effective for detecting attacks in IoT networks, particularly for sophisticated attacks. However, the final choice of model depends on the constraints of the application, taking into account a trade-off between accuracy and complexity.
文摘针对车联网中拒绝服务(denial of service,DoS)攻击难以防范且现有监督学习方法无法有效检测零日攻击的问题,提出了一种混合DoS攻击入侵检测系统.首先,对数据集进行预处理,提高数据的质量;其次,利用特征选择滤除冗余特征,旨在获得代表性更强的特征;再次,采用集成学习方法将5种基于树结构的监督分类器堆叠集成用于检测已知DoS攻击;最后,提出了一种无监督异常检测方法,将卷积去噪自动编码器与注意力机制相结合来建立正常行为模型,用于检测堆叠集成模型漏报的未知DoS攻击.实验结果表明,对于已知DoS攻击检测,所提系统在Car-Hacking数据集和CICIDS2017数据集上的检测准确率分别为100%和99.967%;对于未知DoS攻击检测,所提系统在上述两个数据集上的检测准确率分别为100%和83.953%,并且在两个数据集上的平均测试时间分别为0.072 ms和0.157 ms,验证了所提系统的有效性和可行性.
文摘在分布式物联网的大规模应用背景下,各实体设备中密码技术作为信息安全的底层支撑架构,正面临着侧信道攻击(SCA)这一物理层安全威胁的严峻挑战. SM4分组密码算法作为我国自主研制的商用密码算法标准,已深度集成于分布式物联网安全协议中,但其实现层面的侧信道脆弱性问题亟待解决.针对SM4密钥扩展算法的侧信道攻击研究存在空白,现有攻击方法多依赖多能迹统计特性,而单能迹攻击研究匮乏.研究提出一种基于贝叶斯网络结合建模侧信道攻击的单能迹侧信道攻击方法,针对单条能量轨迹,通过构建概率图模型,结合置信传播算法,实现对轮子密钥的高效推测,进而恢复主密钥.仿真实验与实测实验表明该攻击方法有效,在理想实测环境下主密钥恢复成功率达85.74%,即使在实测能迹中添加大量高斯白噪声,使得信噪比仅为10 d B的条件下,成功率仍可达70%.与传统方法相比,所提方法在成功率、所需能量轨迹数量和攻击时间等方面优势显著,为分布式物联网系统含密设备的侧信道攻击研究提供了新的思路与技术手段,也为相关防护设计提供了理论依据和参考.