Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost.However,the use of Zn metal in batteries suffers f...Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost.However,the use of Zn metal in batteries suffers from many severe issues,including dendrite growth and parasitic reactions,which often lead to short cycle lives.Herein,we propose the construction of functional organic interfacial layers(OIL)on the Zn metal anodes to address these challenges.Through a well-designed organic-assist pre-construction process,a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed,which can not only efficiently facilitate the smooth Zn plating and stripping,but also introduce a stable environment for battery reactions.Through density functional theory calculations and experimental characterizations,we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn^(2+)transport.Thus,the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation.When paired with the H_(2)V_(3)O_(8)cathode,the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles,marking an important milestone for Zn anode development for potential industrial applications.展开更多
Considering the growing pre-lithiation demand for high-performance Si-based anodes and consequent additional costs caused by the strict pre-lithiation environment,developing effective and environmentally stable pre-li...Considering the growing pre-lithiation demand for high-performance Si-based anodes and consequent additional costs caused by the strict pre-lithiation environment,developing effective and environmentally stable pre-lithiation additives is a challenging research hotspot.Herein,interfacial engineered multifunctional Li_(13)Si_(4)@perfluoropolyether(PFPE)/LiF micro/nanoparticles are proposed as anode pre-lithiation additives,successfully constructed with the hybrid interface on the surface of Li_(13)Si_(4)through PFPE-induced nucleophilic substitution.The synthesized multifunctional Li_(13)Si_(4)@PFPE/LiF realizes the integration of active Li compensation,long-term chemical structural stability in air,and solid electrolyte interface(SEI)optimization.In particular,the Li_(13)Si_(4)@PFPE/LiF with a high pre-lithiation capacity(1102.4 mAh g^(-1))is employed in the pre-lithiation Si-based anode,which exhibits a superior initial Coulombic efficiency of 102.6%.Additionally,in situ X-ray diffraction/Raman,density functional theory calculation,and finite element analysis jointly illustrate that PFPE-predominant hybrid interface with modulated abundant highly electronegative F atoms distribution reduces the water adsorption energy and oxidation kinetics of Li_(13)Si_(4)@PFPE/LiF,which delivers a high pre-lithiation capacity retention of 84.39%after exposure to extremely moist air(60%relative humidity).Intriguingly,a LiF-rich mechanically stable bilayer SEI is constructed on anodes through a pre-lithiation-driven regulation for the behavior of electrolyte decomposition.Benefitting from pre-lithiation via multifunctional Li_(13)Si_(4)@PFPE/LiF,the full cell and pouch cell assembled with pre-lithiated anodes operate with long-time stability of 86.5%capacity retention over 200 cycles and superior energy density of 549.9 Wh kg^(-1),respectively.The universal multifunctional pre-lithiation additives provide enlightenment on promoting large-scale applications of pre-lithiation on commercial high-energy-density and long-cycle-life lithium-ion batteries.展开更多
Hydrogels are classical soft and wet materials that have been extensively studied over the past several decades. Recently, with the development of supramolecular science, nanotechnology and precisely synthetic chemist...Hydrogels are classical soft and wet materials that have been extensively studied over the past several decades. Recently, with the development of supramolecular science, nanotechnology and precisely synthetic chemistry, various novel hydrogels have been designed and fabricated, which show emerging applications in tissue engineering, drug delivery, anti-fouling coatings, flexible electronics and soft robotics. Through tailoring their two-dimensional surface structures and three- dimensional networks, unique properties such as ultra-high mechanical strength, responsiveness to various kinds of stimuli, biocompatibility, special wettability and adhesion can be achieved.展开更多
Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and device...Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed.展开更多
基金supported by the Australian Research Council (FT180100705, DP230101579, DE240100868)CSIRO “International Hydrogen Research Collaboration ProgramRESEARCH FELLOWSHIPS”+2 种基金the National Natural Science Foundation of China (22209103)support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”the “Innovation Research Team of High-Level Local Universities in Shanghai”
文摘Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost.However,the use of Zn metal in batteries suffers from many severe issues,including dendrite growth and parasitic reactions,which often lead to short cycle lives.Herein,we propose the construction of functional organic interfacial layers(OIL)on the Zn metal anodes to address these challenges.Through a well-designed organic-assist pre-construction process,a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed,which can not only efficiently facilitate the smooth Zn plating and stripping,but also introduce a stable environment for battery reactions.Through density functional theory calculations and experimental characterizations,we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn^(2+)transport.Thus,the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation.When paired with the H_(2)V_(3)O_(8)cathode,the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles,marking an important milestone for Zn anode development for potential industrial applications.
基金Huaiyu Shao acknowledges the Shenzhen-Hong Kong-Macao Science and Technology Plan Project(Category C)(Grant No.SGDX20220530111004028)the Macao Science and Technology Development Fund(FDCT)for funding(FDCT No.0013/2024/RIB1,FDCT-MOST joint project No.0026/2022/AMJ and No.006/2022/ALC of the Macao Centre for Research and Development in Advanced Materials[2022–2024])+2 种基金the Multi-Year Research Grant(MYRG)from University of Macao(project No.MYRG-GRG2023-00140-IAPME-UMDF and No.MYRG-GRG2024-00206-IAPME)Natural Science Foundation of Guangdong Province(Grant No.2023A1515010765)Science and Technology Program of Guangdong Province of China(Grant No.2023A0505030001)。
文摘Considering the growing pre-lithiation demand for high-performance Si-based anodes and consequent additional costs caused by the strict pre-lithiation environment,developing effective and environmentally stable pre-lithiation additives is a challenging research hotspot.Herein,interfacial engineered multifunctional Li_(13)Si_(4)@perfluoropolyether(PFPE)/LiF micro/nanoparticles are proposed as anode pre-lithiation additives,successfully constructed with the hybrid interface on the surface of Li_(13)Si_(4)through PFPE-induced nucleophilic substitution.The synthesized multifunctional Li_(13)Si_(4)@PFPE/LiF realizes the integration of active Li compensation,long-term chemical structural stability in air,and solid electrolyte interface(SEI)optimization.In particular,the Li_(13)Si_(4)@PFPE/LiF with a high pre-lithiation capacity(1102.4 mAh g^(-1))is employed in the pre-lithiation Si-based anode,which exhibits a superior initial Coulombic efficiency of 102.6%.Additionally,in situ X-ray diffraction/Raman,density functional theory calculation,and finite element analysis jointly illustrate that PFPE-predominant hybrid interface with modulated abundant highly electronegative F atoms distribution reduces the water adsorption energy and oxidation kinetics of Li_(13)Si_(4)@PFPE/LiF,which delivers a high pre-lithiation capacity retention of 84.39%after exposure to extremely moist air(60%relative humidity).Intriguingly,a LiF-rich mechanically stable bilayer SEI is constructed on anodes through a pre-lithiation-driven regulation for the behavior of electrolyte decomposition.Benefitting from pre-lithiation via multifunctional Li_(13)Si_(4)@PFPE/LiF,the full cell and pouch cell assembled with pre-lithiated anodes operate with long-time stability of 86.5%capacity retention over 200 cycles and superior energy density of 549.9 Wh kg^(-1),respectively.The universal multifunctional pre-lithiation additives provide enlightenment on promoting large-scale applications of pre-lithiation on commercial high-energy-density and long-cycle-life lithium-ion batteries.
文摘Hydrogels are classical soft and wet materials that have been extensively studied over the past several decades. Recently, with the development of supramolecular science, nanotechnology and precisely synthetic chemistry, various novel hydrogels have been designed and fabricated, which show emerging applications in tissue engineering, drug delivery, anti-fouling coatings, flexible electronics and soft robotics. Through tailoring their two-dimensional surface structures and three- dimensional networks, unique properties such as ultra-high mechanical strength, responsiveness to various kinds of stimuli, biocompatibility, special wettability and adhesion can be achieved.
基金supported by the National Natural Science Foundation of China(21975264,21925112,21875122,61935016,92056119,61935016,21771008)Beijing Natural Science Foundation(2191003)+1 种基金the Youth Innovation Promotion Association Chinese Academy of Sciences,the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800100,2021YFB3800101,2020YFB1506400)the Basic and Applied Basic Research Foundation of Guangdong Province(2019B1515120083)。
文摘Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed.