期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Micro-scale Cellular Automaton Modeling of Interface Evolution During Reaustenitization from Pearlite Structure in Steels 被引量:1
1
作者 Gang Shen Cheng-Wu Zheng +1 位作者 Jian-Feng Gu Dian-Zhong Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第7期713-722,共10页
A modified cellular automaton model is developed to depict the interface evolution inside the cementite plus ferrite lamellar microstructures during the reaustenitization of a pearlite steel. In this model, migrations... A modified cellular automaton model is developed to depict the interface evolution inside the cementite plus ferrite lamellar microstructures during the reaustenitization of a pearlite steel. In this model, migrations of both the austenite- ferrite and austenite-cementite interfaces coupled with the carbon diffusion and redistribution are integrated. The capil- laxity effect derived from local interface curvatures is also carefully considered by involving the concentration given by the phase diagram modified by the Gibbs-Thomson effect. This allows the interface evolution from a transient state to a steady state under different annealing conditions and various interlamellar spacings to be simulated. The proposed cellular automaton approach could be readily used to describe the kinetics of austenite formation from the lamellar pearlites and virtually reveal the kinematics of the moving interfaces from the microstructural aspect. 展开更多
关键词 Austenite formation Lamellar pearlite interface evolution Cellular automaton Microstructural modeling
原文传递
Evolution,Control,and Effects of Interface in CNT/Al Composites:a Review 被引量:3
2
作者 Genlian Fan Ziyun Yu +2 位作者 Zhanqiu Tan Zhiqiang Li Di Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第5期839-843,共5页
This review summarizes the work carried out in the field of interface study in carbon nanotube reinforced aluminum (CNT/A1) composites. Much research work has been conducted to reveal the evolution of CNT/A1 interfa... This review summarizes the work carried out in the field of interface study in carbon nanotube reinforced aluminum (CNT/A1) composites. Much research work has been conducted to reveal the evolution of CNT/A1 interface in producing the composite with the purpose of achieving uniform distribution of CNTs and tight interfacial bonding. The effect and principles of coating were reviewed along with the illustration of "intermetallic interphases" design. Different roles of CNT/Al interface in structural and functional application were elucidated, and the future work that needs attention was addressed. 展开更多
关键词 CNT/Al composites interface evolution interface control COATING
原文传递
Atomistic insights into dynamic evolution of solid electrolyte interface
3
作者 Yilin Chen Yuxin Fan +4 位作者 Yongqing Gong Chenlong Gao Yunhui Huang Wei Luo Menghao Yang 《Journal of Energy Chemistry》 2025年第12期401-411,I0012,共12页
Lithium-ion batteries are at the forefront of modern energy storage technology.However,the accumulation of by-products such as ethylene and carbon dioxide during charging and discharging cycles reduces battery effecti... Lithium-ion batteries are at the forefront of modern energy storage technology.However,the accumulation of by-products such as ethylene and carbon dioxide during charging and discharging cycles reduces battery effective capacity and threatens large-scale safe performance.With significant advantages over ethylene carbonate(EC)electrolytes,fluorinated electrolytes can more effectively suppress internal gas evolution,thereby improving battery safety and cycling stability.To reveal the mechanism behind gas formation in lithium-ion batteries,our study investigated the transport behavior and interfacial products of fluorinated electrolytes under various operation conditions,including electrode material and electrolyte composition.Innovatively,we applied the reaction network integrator ReacNetGenerator to the analysis of the solid electrolyte interface(SEI)in lithium batteries,providing more molecular fingerprint information from the perspective of specific products.Using reactive molecular dynamics(MD)simulations with the ReaxFF force field and EChemDID,complemented by density functional theory(DFT)calculations,our results demonstrate that fluorinated electrolytes can effectively suppress the decomposition of LiPF_(6) to produce toxic gases PFs and PF_3.DFT analysis further reveals that highly fluorinated solvents(e.g.,FEMC)enhance the anti-reduction stability of PF_(6)~-through synergistic regulation of molecular orbital energy levels,thermodynamic electron affinity,charge transfer,and electrostatic potential distribution,thereby mitigating LiPF_(6) decomposition.Additionally,fluorinated electrolytes generate significantly more LiF components than non-fluorinated ones to promote the formation of a stable and durable solid electrolyte interface(SEI).Experimental validations via XPS and GC-MS confirm reduced CO_(2) generation and LiF-enriched SEI formation,aligning with simulation and DFT data.The findings provide valuable insights for the design of advanced electrolytes aimed at ensuring large-scale,safe energy storage solutions. 展开更多
关键词 Atomistic insights into dynamic evolution of solid electrolyte interface
在线阅读 下载PDF
Reinforced cathode-garnet interface for high-capacity all-solid-state batteries 被引量:2
4
作者 Chenxi Zheng Shijun Tang +7 位作者 Fangmei Wen Jinxue Peng Wu Yang Zhongwei Lv Yongmin Wu Weiping Tang Zhengliang Gong Yong Yang 《Materials Futures》 2022年第4期144-153,共10页
Garnet-type solid-state electrolytes(SSEs)are particularly attractive in the construction of all-solid-state lithium(Li)batteries due to their high ionic conductivity,wide electrochemical window and remarkable(electro... Garnet-type solid-state electrolytes(SSEs)are particularly attractive in the construction of all-solid-state lithium(Li)batteries due to their high ionic conductivity,wide electrochemical window and remarkable(electro)chemical stability.However,the intractable issues of poor cathode/garnet interface and general low cathode loading hinder their practical application.Herein,we demonstrate the construction of a reinforced cathode/garnet interface by spark plasma sintering,via co-sintering Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO)electrolyte powder and LiCoO_(2)/LLZTO composite cathode powder directly into a dense dual-layer with 5 wt%Li_(3)BO_(3)as sintering additive.The bulk composite cathode with LiCoO_(2)/LLZTO cross-linked structure is firmly welded to the LLZTO layer,which optimizes both Li-ion and electron transport.Therefore,the one-step integrated sintering process implements an ultra-low cathode/garnet interfacial resistance of 3.9Ωcm^(2)(100◦C)and a high cathode loading up to 2.02 mAh cm^(−2).Moreover,the Li_(3)BO_(3)reinforced LiCoO_(2)/LLZTO interface also effectively mitigates the strain/stress of LiCoO_(2),which facilitates the achieving of superior cycling stability.The bulk-type Li|LLZTO|LiCoO_(2)-LLZTO full cell with areal capacity of 0.73 mAh cm^(−2)delivers capacity retention of 81.7%after 50 cycles at 100μA cm^(−2).Furthermore,we reveal that non-uniform Li plating/stripping leads to the formation of gaps and finally results in the separation of Li and LLZTO electrolyte during long-term cycling,which becomes the dominant capacity decay mechanism in high-capacity full cells.This work provides insight into the degradation of Li/SSE interface and a strategy to radically improve the electrochemical performance of garnet-based all-solid-state Li batteries. 展开更多
关键词 garnet electrolyte all-solid-state battery high cathode loading interface evolution spark plasma sintering
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部