A closed-loop teleprompter system was used to isolate and manipulate social interactivity in thenatural courtship interactions of pigeons Columbia livia. In Experiment 1, a live face-to-face real-time interaction betw...A closed-loop teleprompter system was used to isolate and manipulate social interactivity in thenatural courtship interactions of pigeons Columbia livia. In Experiment 1, a live face-to-face real-time interaction between 2 courting pigeons (Live) was compared to a played back version of thevideo stimulus recorded during the pairs Live interaction. We found that pigeons were behavinginteractively; their behavior depended on the relationships between their own signals and those oftheir partner. In Experiment 2, we tested whether social interactivity relies on spatial cues presentin the facing direction of a partner's display. By moving the teleprompter camera 90~ away from itsoriginal location, the partner's display was manipulated to appear as if it is directed 90~ away fromthe subject. We found no effect of spatial offset on the pigeon's behavioral response. In Experiment3, 3 time delays, 1 s, 3s, and 9s, a Live condition, and a playback condition were chosen to investi-gate the importance of temporal contiguity in social interactivity. Furthermore, both opposite-sex(courtship) and same-sex (rivalry) pairs were studied to investigate whether social-context affectssocial interactivity sensitivity. Our results showed that pigeon courtship behavior is sensitive totemporal contiguity. Behavior declined in the 9 s and Playback conditions as compared to Live con-dition and the shorter time delays. For males only, courtship behavior also increased in the 3-sdelay condition. The effect of social interactivity and time delay was not observed in rivalry inter-actions, suggesting that social interactivity may be specific to courtship.展开更多
What are the articulative semiotic characteristics of the Instagram interface, and how do they contribute to the construction of documentary, conversational photographic discourses with social purposes? This is a sem...What are the articulative semiotic characteristics of the Instagram interface, and how do they contribute to the construction of documentary, conversational photographic discourses with social purposes? This is a semiotic analysis of the Instagram interface as an interactive and conversational platform in creating new photographic documentary strategies for social purposes, to which we have applied the model of textual conversation as outlined by Bettetini (1984) and the concept of multidimensional interactivity proposed by Sally McMillan (2006). We shall analyse the work of Pachi Tamer (@cachafaz) in Instagram,and in particular the "Jim-Oktoberfest" case, the One-Dollar-Dreams site and the same author's "Sebasti^in" case from a semiotic perspective.展开更多
Interactivity in online newspapers is the focus of this chapter in eliciting readers’evaluation of Zambian online newspapers.This aspect of the study investigates and characterises the motivations(gratification sough...Interactivity in online newspapers is the focus of this chapter in eliciting readers’evaluation of Zambian online newspapers.This aspect of the study investigates and characterises the motivations(gratification sought)for use of interactivity features(“process motivation”)and how widely they are used.It also attempts to ascertain the gratification obtained from their use among readers.The probable relationships between use of the interactivity features(“audience interactivity”)and gratification obtained from them(“process gratification”)and the impact of the perceived credibility of the online newspapers on gratification are also examined.Past studies present mixed results on use of interactivity and gratification obtained from it.This study finds that use of interactivity in Zambian online newspapers is at a low level,although among the three broad categorisations of features of online newspapers,interactivity attracts greater use than hyper-textuality and multi-mediality.Human interactivity features-“knowing what others think about an issue”,“chat on the Facebook page of the newspaper”,“ability to navigate on the Facebook page of the newspaper”,and“posting own comments on stories”-are the main motivations for use of online newspapers,the most frequently used,and the most gratifying to the readers.While readers express an interest in interacting with other readers via online newspapers,they seem less interested in posting their own stories as“citizen journalists”and linking up with the publishers and editors.This finding challenges the notion that all new media are catalysts of participatory and cyclic communication.展开更多
In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standa...In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standard of social knowledge level and competition intensifi es,more and more people have a goal to build a lifelong learning system, according to their own hobbies, work and the needs of the marketcompetition. Under this condition, the vocational education is becoming more and more essential. This paper integrates the VR and man-machineinteractive concept to propose the new education paradigm that is innovative.展开更多
L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
Human computer interaction (HCI) and software engineering approaches are always taken into the account together in order to make the well-organized software. Interactive design is the significant part of new media whi...Human computer interaction (HCI) and software engineering approaches are always taken into the account together in order to make the well-organized software. Interactive design is the significant part of new media which has been proposed to the world for the past decades, and it is a very proficient technique. Interactive maps add more dimensions of information;they become a more and more helpful tools and resources. This research clarifies the idea of how we can smooth the progress of presenting and communicating the essential information using interactive manner. The interactive map of Bangkok underground train and sky train navigation routes map was developed as the case study using user-centered design (UCD) methodology as the fundamental developing processes. The main objective of the work is to develop the friendly and usable web based software that reduce the confusion and help users save times. The software developing processes in this work tend to focus on the users. And also the essential idea of the research is to take the uses and gratification communication theory of the users into account with the intention of providing what user requires by finding the real users’ requirements. This means the user can control software according to their needs and software act or response according to user’s requests. The paper mentions the role of communication theory, human computer interaction, and user-centered design software developing.展开更多
The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,e...The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,encouraging active participation and promoting effective learning.The benefits of interactive audience software in medical education include increased student engagement,promotion of active learning,and enhanced learning outcomes.However,there are also several challenges to its implementation,including technical difficulties,careful planning and preparation,over-reliance on technology,and ethical concerns related to privacy and data security.The cost of implementing interactive audience software may also be a barrier for some institutions.This paper specifically reviews six interactive software platforms,including Socrative,Quizizz,Pear Deck,Slido,Wooclap and ClassPoint.These platforms allow for real-time assessment of student understanding,feedback,and participation.They also enable instructors to adjust their teaching strategies based on student responses and feedback.Overall,interactive audience software has shown great potential to enhance learning and engagement in medical education.It is important for instructors to carefully consider the benefits and challenges of its implementation.While the cost of implementing interactive audience software may be a barrier for some institutions,there are free and low-cost options available.展开更多
The surge in online shopping has resulted in an increased dependence on online product evaluations by consumers.However,the varying quality of reviews provided by businesses and consumers can introduce biased influenc...The surge in online shopping has resulted in an increased dependence on online product evaluations by consumers.However,the varying quality of reviews provided by businesses and consumers can introduce biased influences on consumer decision-making processes.To address this concern,Chinese online shopping platforms are introducing a“jury panel”mechanism to alleviate negative consumer experiences arising from inappropriate feedback.This research centers on the Meituan App case and utilizes an expanded Technology Acceptance Model(TAM)framework to explore concepts such as perceived ease of use,perceived usefulness,and usage intention within the framework of the assessment system.Furthermore,the study investigates external factors like perceived organizational support and perceived interactivity to comprehend their effects on system utilization.By analyzing how these elements impact perceived ease of use,perceived usefulness,and perceived playfulness,the research aims to construct a quantitative model that clarifies the factors influencing consumers'ongoing intention to use the assessment system.Through this investigation,the study aims to enrich the TAM theory,unveil the internal mechanisms influencing consumer engagement in the assessment system,and provide recommendations for enhancing the system and formulating strategies to promote a healthy e-commerce environment.展开更多
The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their recept...The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their receptors,and downstream signal transducers,organize neural wiring to generate the complex architecture of the nervous system.It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system.This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system.Supporting this view,these pathways continue to regulate synaptic connectivity,plasticity,and remodeling,and overall brain homeostasis throughout adulthood.Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders.Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified,emerging evidence points to several common themes,including dysfunction in neurons,microglia,astrocytes,and endothelial cells,along with dysregulation of neuron-microglia-astrocyte,neuroimmune,and neurovascular interactions.In this review,we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions.For instance,recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation.We discuss the challenges ahead,along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases.Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions.Specifically,we examine the crosstalk between neuronal guidance signaling and TREM2,a master regulator of microglial function,in the context of pathogenic protein aggregates.It is well-established that age is a major risk factor for neurodegeneration.Future research should address how aging and neuronal guidance signaling interact to influence an individual’s susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.展开更多
Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in dis...Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in disease. Identification of bioactive materials capable of altering the abundances of these species both safely and effectively is a major goal in microbiome research. Many traditional Chinese medicines (TCMs) have been reported to affect the composition of the gut microbiome. Here, we summarize studies that have used TCMs to alter the gut microbiome and discuss the response relationship between TCMs and gut microbial species. Methods: We searched the PubMed, Web of Science, and Knowledge Network databases using the terms “traditional Chinese medicine,” “gut microbiome,” and specific system disease names (endocrine, immune, nervous, cardiovascular, and digestive). Studies were excluded if irrelevant or if the experimental procedures were unclear. Results: TCMs have been reported to affect a wide range of gut microbial taxa spanning major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobiota, Actinobacteria, and Fusobacteria. In all, 54 TCMs including compounds and extracts have been tested in rodents and 30 have been examined in human trials. Almost all studies have reported positive results in regulating the gut microbiome as well as modulating corresponding phenotypes, spanning diseases of the endocrine, immune, nervous, cardiovascular, and digestive systems. Gut species, including Akkermansia, Bacteroides, Fusobacterium, Faecalibacterium, and E. coli, were found to be regulated by 19 TCMs. A network was constructed to visualize the interactions between TCMs and these taxa. Conclusion: There exists a complex and close relationship between intestinal microflora and diseases. Sufficient experimental data and studies have proved that the imbalance of intestinal microflora affects health by mediating metabolism, immune regulation, inflammation and signal transduction. Many characteristic alterations of intestinal microflora are positively correlated with diseases, so intestinal microflora has become a potential risk index and treatment target for many diseases. Many TCMs affect the relative abundances of microbial species in the gut, and therefore may be useful for modulating the gut microbiome. This review provides a reference for prioritizing candidate TCMs from the enormous repertoire of such medicines to test which specific gut microbes are targeted.展开更多
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ...Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
Applying artificial intelligence(AI)technology to language teaching has become a new trend in higher education.As an AI tool fully leveraging deep learning technology,Deepseek has been increasingly adopted in universi...Applying artificial intelligence(AI)technology to language teaching has become a new trend in higher education.As an AI tool fully leveraging deep learning technology,Deepseek has been increasingly adopted in university English teaching.This paper analyzes Deepseek’s practical applications in university English teaching,including automated interactive learning,quality assessment,specialized learning modules as well as integration of ideological and political education in English teaching.Additionally,it discusses major challenges encountered during Deepseek’s application,such as insufficient student interaction and concerns related to data privacy and information security.Finally,the paper explores future directions for Deepseek in university English education,proposing strategies to promote human-AI collaborative teaching models and enhance data integration to improve model output quality.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
The Late Cretaceous Jiepailing granitoids,located at the central Nanling Range in South China,are closely associated with significant Sn-Li-Be-F polymetallic metallogeny.The Jiepailing granitoids mainly consist of gra...The Late Cretaceous Jiepailing granitoids,located at the central Nanling Range in South China,are closely associated with significant Sn-Li-Be-F polymetallic metallogeny.The Jiepailing granitoids mainly consist of granitic porphyry and zinnwaldite granite.The two granitoids have an A-type affinity,showing elevated Rb/Sr ratios and significant depletions in Ba,Sr and P.Integrated zircon and monazite U-Pb dating results suggest that granitic porphyry and zinnwaldite granite were emplaced at~89 Ma and~94 Ma,respectively.The low Ce^(4+)/Ce^(3+)ratios of the Jiepailing granitoids,together with significant negative Eu anomalies of the zircons,indicate that their formation occurred under conditions of reduced oxygen fugacity.Through the analysis of zircon Hf-O and whole-rock Nd isotopes,it has been determined that both stages of the Jiepailing granitoids originated in the lower-middle Mesoproterozoic crustal basement[ε_(Nd)(t)=−5.33 to−4.96,t^(C)_(DM)(Nd)=1289-1234 Ma,ε_(Hf)(t)=−4.13 to+2.22,t^(C)_(DM)(Hf)=1418-1015 Ma andδ^(18)O_(Zrc)=6.33‰-7.72‰],with the involvement of mantle-derived materials.Both granitic porphyry and zinnwaldite granite exhibit elevated concentrations of fluorine(F),with the positive correlation between F and Sn emphasizing the crucial role of high F sources in tin mineralization.Drawing upon the study of the Late Cretaceous magma systems in southern Hunan and through comparison with the mineralized granites observed in coastal regions during the Late Cretaceous,a genetic model for the mineralized granites in the Nanling region is developed.When the Paleo-Pacific Plate retreated to the coastal region,the continental crust in southern China underwent extensional thinning and asthenospheric upwelling due to gravitational collapse.Such processes resulted in the partial melting of the middle-lower crustal metamorphic sedimentary basement and the subsequent formation of F-rich granitic magmas,related to tin mineralization.展开更多
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc...To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.展开更多
文摘A closed-loop teleprompter system was used to isolate and manipulate social interactivity in thenatural courtship interactions of pigeons Columbia livia. In Experiment 1, a live face-to-face real-time interaction between 2 courting pigeons (Live) was compared to a played back version of thevideo stimulus recorded during the pairs Live interaction. We found that pigeons were behavinginteractively; their behavior depended on the relationships between their own signals and those oftheir partner. In Experiment 2, we tested whether social interactivity relies on spatial cues presentin the facing direction of a partner's display. By moving the teleprompter camera 90~ away from itsoriginal location, the partner's display was manipulated to appear as if it is directed 90~ away fromthe subject. We found no effect of spatial offset on the pigeon's behavioral response. In Experiment3, 3 time delays, 1 s, 3s, and 9s, a Live condition, and a playback condition were chosen to investi-gate the importance of temporal contiguity in social interactivity. Furthermore, both opposite-sex(courtship) and same-sex (rivalry) pairs were studied to investigate whether social-context affectssocial interactivity sensitivity. Our results showed that pigeon courtship behavior is sensitive totemporal contiguity. Behavior declined in the 9 s and Playback conditions as compared to Live con-dition and the shorter time delays. For males only, courtship behavior also increased in the 3-sdelay condition. The effect of social interactivity and time delay was not observed in rivalry inter-actions, suggesting that social interactivity may be specific to courtship.
文摘What are the articulative semiotic characteristics of the Instagram interface, and how do they contribute to the construction of documentary, conversational photographic discourses with social purposes? This is a semiotic analysis of the Instagram interface as an interactive and conversational platform in creating new photographic documentary strategies for social purposes, to which we have applied the model of textual conversation as outlined by Bettetini (1984) and the concept of multidimensional interactivity proposed by Sally McMillan (2006). We shall analyse the work of Pachi Tamer (@cachafaz) in Instagram,and in particular the "Jim-Oktoberfest" case, the One-Dollar-Dreams site and the same author's "Sebasti^in" case from a semiotic perspective.
文摘Interactivity in online newspapers is the focus of this chapter in eliciting readers’evaluation of Zambian online newspapers.This aspect of the study investigates and characterises the motivations(gratification sought)for use of interactivity features(“process motivation”)and how widely they are used.It also attempts to ascertain the gratification obtained from their use among readers.The probable relationships between use of the interactivity features(“audience interactivity”)and gratification obtained from them(“process gratification”)and the impact of the perceived credibility of the online newspapers on gratification are also examined.Past studies present mixed results on use of interactivity and gratification obtained from it.This study finds that use of interactivity in Zambian online newspapers is at a low level,although among the three broad categorisations of features of online newspapers,interactivity attracts greater use than hyper-textuality and multi-mediality.Human interactivity features-“knowing what others think about an issue”,“chat on the Facebook page of the newspaper”,“ability to navigate on the Facebook page of the newspaper”,and“posting own comments on stories”-are the main motivations for use of online newspapers,the most frequently used,and the most gratifying to the readers.While readers express an interest in interacting with other readers via online newspapers,they seem less interested in posting their own stories as“citizen journalists”and linking up with the publishers and editors.This finding challenges the notion that all new media are catalysts of participatory and cyclic communication.
文摘In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standard of social knowledge level and competition intensifi es,more and more people have a goal to build a lifelong learning system, according to their own hobbies, work and the needs of the marketcompetition. Under this condition, the vocational education is becoming more and more essential. This paper integrates the VR and man-machineinteractive concept to propose the new education paradigm that is innovative.
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
文摘Human computer interaction (HCI) and software engineering approaches are always taken into the account together in order to make the well-organized software. Interactive design is the significant part of new media which has been proposed to the world for the past decades, and it is a very proficient technique. Interactive maps add more dimensions of information;they become a more and more helpful tools and resources. This research clarifies the idea of how we can smooth the progress of presenting and communicating the essential information using interactive manner. The interactive map of Bangkok underground train and sky train navigation routes map was developed as the case study using user-centered design (UCD) methodology as the fundamental developing processes. The main objective of the work is to develop the friendly and usable web based software that reduce the confusion and help users save times. The software developing processes in this work tend to focus on the users. And also the essential idea of the research is to take the uses and gratification communication theory of the users into account with the intention of providing what user requires by finding the real users’ requirements. This means the user can control software according to their needs and software act or response according to user’s requests. The paper mentions the role of communication theory, human computer interaction, and user-centered design software developing.
文摘The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,encouraging active participation and promoting effective learning.The benefits of interactive audience software in medical education include increased student engagement,promotion of active learning,and enhanced learning outcomes.However,there are also several challenges to its implementation,including technical difficulties,careful planning and preparation,over-reliance on technology,and ethical concerns related to privacy and data security.The cost of implementing interactive audience software may also be a barrier for some institutions.This paper specifically reviews six interactive software platforms,including Socrative,Quizizz,Pear Deck,Slido,Wooclap and ClassPoint.These platforms allow for real-time assessment of student understanding,feedback,and participation.They also enable instructors to adjust their teaching strategies based on student responses and feedback.Overall,interactive audience software has shown great potential to enhance learning and engagement in medical education.It is important for instructors to carefully consider the benefits and challenges of its implementation.While the cost of implementing interactive audience software may be a barrier for some institutions,there are free and low-cost options available.
文摘The surge in online shopping has resulted in an increased dependence on online product evaluations by consumers.However,the varying quality of reviews provided by businesses and consumers can introduce biased influences on consumer decision-making processes.To address this concern,Chinese online shopping platforms are introducing a“jury panel”mechanism to alleviate negative consumer experiences arising from inappropriate feedback.This research centers on the Meituan App case and utilizes an expanded Technology Acceptance Model(TAM)framework to explore concepts such as perceived ease of use,perceived usefulness,and usage intention within the framework of the assessment system.Furthermore,the study investigates external factors like perceived organizational support and perceived interactivity to comprehend their effects on system utilization.By analyzing how these elements impact perceived ease of use,perceived usefulness,and perceived playfulness,the research aims to construct a quantitative model that clarifies the factors influencing consumers'ongoing intention to use the assessment system.Through this investigation,the study aims to enrich the TAM theory,unveil the internal mechanisms influencing consumer engagement in the assessment system,and provide recommendations for enhancing the system and formulating strategies to promote a healthy e-commerce environment.
基金supported by JSPS(KAKENHI:21K06205,23K06937,24K23419)AMED(to JYK,SaY,TM,SiY,YT,and NH)JYW had long been supported by the NIH.
文摘The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their receptors,and downstream signal transducers,organize neural wiring to generate the complex architecture of the nervous system.It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system.This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system.Supporting this view,these pathways continue to regulate synaptic connectivity,plasticity,and remodeling,and overall brain homeostasis throughout adulthood.Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders.Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified,emerging evidence points to several common themes,including dysfunction in neurons,microglia,astrocytes,and endothelial cells,along with dysregulation of neuron-microglia-astrocyte,neuroimmune,and neurovascular interactions.In this review,we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions.For instance,recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation.We discuss the challenges ahead,along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases.Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions.Specifically,we examine the crosstalk between neuronal guidance signaling and TREM2,a master regulator of microglial function,in the context of pathogenic protein aggregates.It is well-established that age is a major risk factor for neurodegeneration.Future research should address how aging and neuronal guidance signaling interact to influence an individual’s susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
基金funding by National Natural Science Foundation of China(No.82174492)National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion Project(N o.ZJJBGS2024002-1).
文摘Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in disease. Identification of bioactive materials capable of altering the abundances of these species both safely and effectively is a major goal in microbiome research. Many traditional Chinese medicines (TCMs) have been reported to affect the composition of the gut microbiome. Here, we summarize studies that have used TCMs to alter the gut microbiome and discuss the response relationship between TCMs and gut microbial species. Methods: We searched the PubMed, Web of Science, and Knowledge Network databases using the terms “traditional Chinese medicine,” “gut microbiome,” and specific system disease names (endocrine, immune, nervous, cardiovascular, and digestive). Studies were excluded if irrelevant or if the experimental procedures were unclear. Results: TCMs have been reported to affect a wide range of gut microbial taxa spanning major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobiota, Actinobacteria, and Fusobacteria. In all, 54 TCMs including compounds and extracts have been tested in rodents and 30 have been examined in human trials. Almost all studies have reported positive results in regulating the gut microbiome as well as modulating corresponding phenotypes, spanning diseases of the endocrine, immune, nervous, cardiovascular, and digestive systems. Gut species, including Akkermansia, Bacteroides, Fusobacterium, Faecalibacterium, and E. coli, were found to be regulated by 19 TCMs. A network was constructed to visualize the interactions between TCMs and these taxa. Conclusion: There exists a complex and close relationship between intestinal microflora and diseases. Sufficient experimental data and studies have proved that the imbalance of intestinal microflora affects health by mediating metabolism, immune regulation, inflammation and signal transduction. Many characteristic alterations of intestinal microflora are positively correlated with diseases, so intestinal microflora has become a potential risk index and treatment target for many diseases. Many TCMs affect the relative abundances of microbial species in the gut, and therefore may be useful for modulating the gut microbiome. This review provides a reference for prioritizing candidate TCMs from the enormous repertoire of such medicines to test which specific gut microbes are targeted.
基金Supported by the Development and Application Project of Ship CAE Software.
文摘Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘Applying artificial intelligence(AI)technology to language teaching has become a new trend in higher education.As an AI tool fully leveraging deep learning technology,Deepseek has been increasingly adopted in university English teaching.This paper analyzes Deepseek’s practical applications in university English teaching,including automated interactive learning,quality assessment,specialized learning modules as well as integration of ideological and political education in English teaching.Additionally,it discusses major challenges encountered during Deepseek’s application,such as insufficient student interaction and concerns related to data privacy and information security.Finally,the paper explores future directions for Deepseek in university English education,proposing strategies to promote human-AI collaborative teaching models and enhance data integration to improve model output quality.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金financially supported by the National Natural Science Foundation of China(Grant No.42303073).
文摘The Late Cretaceous Jiepailing granitoids,located at the central Nanling Range in South China,are closely associated with significant Sn-Li-Be-F polymetallic metallogeny.The Jiepailing granitoids mainly consist of granitic porphyry and zinnwaldite granite.The two granitoids have an A-type affinity,showing elevated Rb/Sr ratios and significant depletions in Ba,Sr and P.Integrated zircon and monazite U-Pb dating results suggest that granitic porphyry and zinnwaldite granite were emplaced at~89 Ma and~94 Ma,respectively.The low Ce^(4+)/Ce^(3+)ratios of the Jiepailing granitoids,together with significant negative Eu anomalies of the zircons,indicate that their formation occurred under conditions of reduced oxygen fugacity.Through the analysis of zircon Hf-O and whole-rock Nd isotopes,it has been determined that both stages of the Jiepailing granitoids originated in the lower-middle Mesoproterozoic crustal basement[ε_(Nd)(t)=−5.33 to−4.96,t^(C)_(DM)(Nd)=1289-1234 Ma,ε_(Hf)(t)=−4.13 to+2.22,t^(C)_(DM)(Hf)=1418-1015 Ma andδ^(18)O_(Zrc)=6.33‰-7.72‰],with the involvement of mantle-derived materials.Both granitic porphyry and zinnwaldite granite exhibit elevated concentrations of fluorine(F),with the positive correlation between F and Sn emphasizing the crucial role of high F sources in tin mineralization.Drawing upon the study of the Late Cretaceous magma systems in southern Hunan and through comparison with the mineralized granites observed in coastal regions during the Late Cretaceous,a genetic model for the mineralized granites in the Nanling region is developed.When the Paleo-Pacific Plate retreated to the coastal region,the continental crust in southern China underwent extensional thinning and asthenospheric upwelling due to gravitational collapse.Such processes resulted in the partial melting of the middle-lower crustal metamorphic sedimentary basement and the subsequent formation of F-rich granitic magmas,related to tin mineralization.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0714).
文摘To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.