Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challeng...Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data).展开更多
Titanium-doped sapphire is an excellent laser crystal which has a bright future.But the residual infrared absorption in laser operation region of the crystal hindered the enhancement of the laser gain.Reducing the res...Titanium-doped sapphire is an excellent laser crystal which has a bright future.But the residual infrared absorption in laser operation region of the crystal hindered the enhancement of the laser gain.Reducing the residual infrared absorption is the key to that the crystal goes from experimental prototypesto commercially available products.展开更多
The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband ...The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.展开更多
The infrared absorption spectra of different superconducting phase of high Tc super conductor Bi-Sb-Sr-Ca-Cu-O have been measured . The results show that only in the range of 400cm-1 -700cm-1,there is a group of peaks...The infrared absorption spectra of different superconducting phase of high Tc super conductor Bi-Sb-Sr-Ca-Cu-O have been measured . The results show that only in the range of 400cm-1 -700cm-1,there is a group of peaks which changes with different superconducting phases.According to group theory and infrared spectra of CuO, this group of peaks could be assigned to be the [CuO6]octahedron, the [CuO5] pyramid and the [CuO4]plane quadrilateral,but not CU-O plane or CU-O chain. Furthermore, the quasi-three dimensional Cu-O layers consisting of [CuO5] pyramids and proper coupling between them are essential factor for high Tc. It seems that the weaker compling of layers, the higher Tc展开更多
The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) ...The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.展开更多
Using first-principle theory, the infrared absorptions of transition metal (Mn, Fe, Co, Ni)-doped ZnO were investigated. The results indicate that the absorptions of Mn- and Co-incorporated ZnO without oxygen vacanc...Using first-principle theory, the infrared absorptions of transition metal (Mn, Fe, Co, Ni)-doped ZnO were investigated. The results indicate that the absorptions of Mn- and Co-incorporated ZnO without oxygen vacancy are reduced, while those of Fe- and Ni-doped ZnO are raised. This is consistent with the previous experimental results. The effects of oxygen vacancy on the absorptions of the doped systems were predicted. When a neutral oxygen vacancy is introduced, all doping elements decrease the absorptions. On the contrary, the absorptions of the doped systems are enhanced if the vacancies are charged. Degraded absorptions can be obtained by increasing the permeability. However, the appearance of anti-bonding states may cause enhanced absorptions. In the current study, Mn-doped ZnO is the most suitable for use as low infrared absorption materials.展开更多
Silver nanoparticle thin films with different average particle diameters are grown on silicon substrates. Boron nitride thin films are then deposited on the silver nanoparticle interlayers by radio frequency (RF) ma...Silver nanoparticle thin films with different average particle diameters are grown on silicon substrates. Boron nitride thin films are then deposited on the silver nanoparticle interlayers by radio frequency (RF) magnetron sputtering. The boron nitride thin films are characterized by Fourier transform infrared spectra. The average particle diameters of silver nanoparticle thin films are 126.6, 78.4, and 178.8 nm. The results show that the sizes of the silver nanoparticles have effects on the intensities of infrared spectra of boron nitride thin films. An enhanced infrared absorption is detected for boron nitride thin film grown on silver nanoparticle thin film. This result is helpful to study the growth mechanism of boron nitride thin film.展开更多
Polycrystalline samples La0.67-xDyxCa0.3MnO3 (x=0~0.6) were prepared by traditional solid-state reaction method. The magnetization and resistivity of the samples were measured by PPMS (Quantum Design). The infrared a...Polycrystalline samples La0.67-xDyxCa0.3MnO3 (x=0~0.6) were prepared by traditional solid-state reaction method. The magnetization and resistivity of the samples were measured by PPMS (Quantum Design). The infrared absorption spectra (temperature scope: 20~300 K, frequency: 400~4400 cm-1) were collected by WQF-410 Fourier Transform Spectrophotometer. The substitution of Dy on La sites results in a decrease of the Curie temperature Tc and the magnetization, and also induces cluster-glass behaviors. The resistivity of the compounds is enhanced by Dy doped. Infrared absorption spectra provide the evidence of the variety of Mn-O-Mn bond length due to the Dy substitution and temperature changing. These results suggest that all of the magnetic coupling between Dy and Mn sublattice and La-Dy average ionic radius contribute to the magnetic and electronic character.展开更多
Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of poly- crystalline cubic boron nitride thin films under the residual compressive stress conditions have be...Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of poly- crystalline cubic boron nitride thin films under the residual compressive stress conditions have been performed. Our results indicate that the intensity of the IR absorption is proportional to the total degree of freedom of all the ions in the ordered regions. The reduction of interstitial Ar atom concentration, which causes the increase in the ordered regions of cubic boron nitride (cBN) crystallites, could be one cause for the increase in the intensity of IR absorption after residual compressive stress relaxation. Theoretical derivation is in good agreement with the experimental results concerning the IR absorption intensity and the Ar interstitial atom concentration in cubic boron nitride films measured by energy dispersion X-ray spec- troscopy. Our results also suggest that the interstitial Ar is the origin of residual compressive stress accumulation in plasma enhanced cBN film deposition.展开更多
Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort.Manipulating the coated quasi-particles between the composite compone...Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort.Manipulating the coated quasi-particles between the composite components offers a platform to study the advanced thermoregulatory textiles.Here,we propose that coating the hyperbolic polariton can be an effective tool to tune infrared absorption in hexagonal boron nitride-coated silk composite.Remarkably,we achieve significant tuning of the infrared absorption efficiency of silk fibrils through the designed hexagonal boron nitride film.The underlying mechanism is related to resonance coupling between hyperbolic phonon polaritons.We find a notably high infrared absorption efficiency,nearly 3 orders larger than that without hBN coating,which can be achieved in our composite system.Our results indicate the promising future of advanced polariton-coated textiles and open a pathway to guide the artificial-intelligence design of advanced functional textiles.展开更多
In situ infrared absorption spectroscopy has been measured for a hot filament diamond growth process. Absorption of CH4 and C2H2 species at 3050 cm-1 and 730 cm-1 were detected respectively. The absorption intensity o...In situ infrared absorption spectroscopy has been measured for a hot filament diamond growth process. Absorption of CH4 and C2H2 species at 3050 cm-1 and 730 cm-1 were detected respectively. The absorption intensity of CH4 decreases while that of C2H2 increases as filament temperature is raised. The correlation between infrared absorption intensity and diamond growth rate or diamond film quality was found. High C2H2 or low CH4 concentration in the reaction region leads to high quality diamond film growth and high growth rate.展开更多
In the theory calculation of lattice vibration, one acoustic and three optical branches were found to compose the phonon vibrating spectrum.Some isolated modes with frequencies lying outside the continuum branches wil...In the theory calculation of lattice vibration, one acoustic and three optical branches were found to compose the phonon vibrating spectrum.Some isolated modes with frequencies lying outside the continuum branches will arise under the defect states.These local model results in the sharp peaks in the infrared absorption and Raman spectra.From calculation of the infrared absorption,the local mode with the infrared activity is obtained in the infrared absorption spectrum of MX compounds.展开更多
We propose a modular designed over-coupled(OC)metasurface for the broadband surface-enhanced infrared absorption spectroscopy(SEIRAS)by analyzing the combined properties in the far field and near field.The customized ...We propose a modular designed over-coupled(OC)metasurface for the broadband surface-enhanced infrared absorption spectroscopy(SEIRAS)by analyzing the combined properties in the far field and near field.The customized sensors can independently modify the coupling mode,the resonance frequency,and the coupling efficiency by adjusting the vertical and horizontal structures and hybrid dielectric layers of the metasurface,respectively.Based on the independent regulation of the sensor properties,the influence of the detuning properties,the level of OC coupling,and the coupling efficiency of the signal amplification can be clearly presented through the single variable-controlling approach.These design principles are universal for customized sensors and herald possibilities for machine-learning-aided surface-enhanced infrared absorption(SEIRA)biosensing.展开更多
Surface chirality plays an important role in determining the biological effect,but the molecular nature beyond stereoselectivity is still unknown.Herein,through surface-enhanced infrared absorption spectroscopy,electr...Surface chirality plays an important role in determining the biological effect,but the molecular nature beyond stereoselectivity is still unknown.Herein,through surface-enhanced infrared absorption spectroscopy,electrochemistry,and theoretical simulations,we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole poten-tial at chiral interface and their different interfacial interactions,which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration,thereby regulating the interaction between amyloid-βpeptide(Aβ)and N-isobutyryl-cysteine(NIBC).Water on L-NIBC interface which shows stronger positive dipole potential weakens the negative surface potential,but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L-NIBC and resultedfiber aggregate.Conversely,electrostatic interaction between Aβ42 and D-NIBC induces spherical oligomer.Thesefindings provide new insight into molecular nature of chirality-regulated biological effect.展开更多
Attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)has recently been proven to be a powerful tool for bioanalysis.It enables in situ and in real-time observation of dynamic proces...Attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)has recently been proven to be a powerful tool for bioanalysis.It enables in situ and in real-time observation of dynamic processes occurring on specific interface,revealing rich structural and functional information of biomolecules at sub monolayer level.The aim of this general review was to give an overview of the cutting edge applications of ATRSEIRAS.We start with description of the basic configuration of the standard ATR-SEIRAS platform.The enhanced mechanisms and methods to fabricate enhanced substrates are then presented.We discuss the recent developments,challenges and applications of ATR-SEIRAS in bioanalysis,mainly focusing on DNA analysis,protein behavior and cell properties.Finally,further development of the ATRSEIRAS technique with enhanced sensitivity,improved time and spatial resolutions will be prospected.展开更多
An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface ...An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface terminals respectively.The chain-length of alkane exceeds the bond-length of surface functionalities T(x=O,-OH,-F)so as to introduce intra-flake and inter-flake strains into Ti_(3)C_(2)T_(x)MXene.The electronic microscopy(TEM/AFM)shows obvious edge-fold and tensile/compressive deformation of flake.The alkane termination increases the intrinsic absorbance of Ti_(3)C_(2)T_(x)MXene from no more than 50%up to more than 99%in the mid-wavelength in⁃frared region from 2.5μm to 4.5μm.Such an absorption enhancement attributes to the reduce of infrared reflec⁃tance of Ti_(3)C_(2)T_(x)MXene.The C-H bond skeleton vibration covers the aforementioned region and partially reduces the surface reflectance.Meanwhile,the flake deformation owing to edge-fold and tensile/compression increases the specific surface area so as to increase the absorption as well.These results have applicable value in the area of mid-infrared camouflage.展开更多
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from...Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.展开更多
A series of near infrared (NIR) absorbing dinuclear ruthenium dicarbonylhydrazine complexes (DCH-Ru),[{Ru(bpy)_2)_2μ-DCH]^(n+) (where bpy = 2,2'-bipyridinc and n = 2, 3 or 4), were prepared. The DCH-Ru complexes ...A series of near infrared (NIR) absorbing dinuclear ruthenium dicarbonylhydrazine complexes (DCH-Ru),[{Ru(bpy)_2)_2μ-DCH]^(n+) (where bpy = 2,2'-bipyridinc and n = 2, 3 or 4), were prepared. The DCH-Ru complexes areelectrochromic in the NIR region with a high absorption coefficient at 1550-1600 nm typically over 10000 M^(-1)cm^(-1). DCH-Ru complex polymers with good NIR electrochromic properties were also obtained and processed to make a device foroptical attenuation at a wavelength of 1550 nm. The potential of these DCH-Ru polymers for use in a variable opticalattenuator has been demonstrated with an attenuating power at the 1550-nm telecommunication wavelength over 7.0 dB permicron of polymer film thickness. Other classes of NIR active materials are the pentacenediquinones and the correspondingpoly(ether pentacenediquinone)s. These polymers can be electrochemically reduced to the corresponding semiquinone(radical anion) having NIR absorption within a telecom window (e. g., 1310 nm).展开更多
This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of...This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.展开更多
The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infra...The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV.展开更多
基金supported by National Natural Science Foundation of China(Grant No.:32301161)the Natural Scientific Foundation of Hunan Province,China(Grant No.:2023JJ60052)+3 种基金the Scientific Research Project of Hunan Provincial Health Commission,China(Grant No.:202112062218,20190161)the Scientific Research Project of Hunan Provincial Department of Education,China(Grant No.:22B0455)the Clinical“4310”Project of the University of South China,China(Grant No.:20224310NHYCG02)the Doctoral Scientific Research Foundation of University of South China,China(Grant No.:200XQD042).
文摘Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data).
文摘Titanium-doped sapphire is an excellent laser crystal which has a bright future.But the residual infrared absorption in laser operation region of the crystal hindered the enhancement of the laser gain.Reducing the residual infrared absorption is the key to that the crystal goes from experimental prototypesto commercially available products.
文摘The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.
文摘The infrared absorption spectra of different superconducting phase of high Tc super conductor Bi-Sb-Sr-Ca-Cu-O have been measured . The results show that only in the range of 400cm-1 -700cm-1,there is a group of peaks which changes with different superconducting phases.According to group theory and infrared spectra of CuO, this group of peaks could be assigned to be the [CuO6]octahedron, the [CuO5] pyramid and the [CuO4]plane quadrilateral,but not CU-O plane or CU-O chain. Furthermore, the quasi-three dimensional Cu-O layers consisting of [CuO5] pyramids and proper coupling between them are essential factor for high Tc. It seems that the weaker compling of layers, the higher Tc
基金supported by the National Natural Science Foundation of China (No. 60561001)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (No. 200408020105)+1 种基金the Program for New Century Excellent Talents in Universities (No. NCET-05-0272)College Science and Technology Re-search Project of Inner Mongolia Autonomous Region, China (No. NJ04094)
文摘The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.
基金financial supported by the Scientific and Technological Program of Shaanxi Province(No.2009K06_03)
文摘Using first-principle theory, the infrared absorptions of transition metal (Mn, Fe, Co, Ni)-doped ZnO were investigated. The results indicate that the absorptions of Mn- and Co-incorporated ZnO without oxygen vacancy are reduced, while those of Fe- and Ni-doped ZnO are raised. This is consistent with the previous experimental results. The effects of oxygen vacancy on the absorptions of the doped systems were predicted. When a neutral oxygen vacancy is introduced, all doping elements decrease the absorptions. On the contrary, the absorptions of the doped systems are enhanced if the vacancies are charged. Degraded absorptions can be obtained by increasing the permeability. However, the appearance of anti-bonding states may cause enhanced absorptions. In the current study, Mn-doped ZnO is the most suitable for use as low infrared absorption materials.
基金Project supported by the Natural Science Foundation of Beijing,China(Grant No.4072007)the National Natural Science Foundation of China(Grant Nos.60876006 and 60376007)
文摘Silver nanoparticle thin films with different average particle diameters are grown on silicon substrates. Boron nitride thin films are then deposited on the silver nanoparticle interlayers by radio frequency (RF) magnetron sputtering. The boron nitride thin films are characterized by Fourier transform infrared spectra. The average particle diameters of silver nanoparticle thin films are 126.6, 78.4, and 178.8 nm. The results show that the sizes of the silver nanoparticles have effects on the intensities of infrared spectra of boron nitride thin films. An enhanced infrared absorption is detected for boron nitride thin film grown on silver nanoparticle thin film. This result is helpful to study the growth mechanism of boron nitride thin film.
基金the Natural Science Foundation of Hebei Province (E2006000058)Doctor Foundation of Hebei Univ.Tech.
文摘Polycrystalline samples La0.67-xDyxCa0.3MnO3 (x=0~0.6) were prepared by traditional solid-state reaction method. The magnetization and resistivity of the samples were measured by PPMS (Quantum Design). The infrared absorption spectra (temperature scope: 20~300 K, frequency: 400~4400 cm-1) were collected by WQF-410 Fourier Transform Spectrophotometer. The substitution of Dy on La sites results in a decrease of the Curie temperature Tc and the magnetization, and also induces cluster-glass behaviors. The resistivity of the compounds is enhanced by Dy doped. Infrared absorption spectra provide the evidence of the variety of Mn-O-Mn bond length due to the Dy substitution and temperature changing. These results suggest that all of the magnetic coupling between Dy and Mn sublattice and La-Dy average ionic radius contribute to the magnetic and electronic character.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50772096 and 61176051)
文摘Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of poly- crystalline cubic boron nitride thin films under the residual compressive stress conditions have been performed. Our results indicate that the intensity of the IR absorption is proportional to the total degree of freedom of all the ions in the ordered regions. The reduction of interstitial Ar atom concentration, which causes the increase in the ordered regions of cubic boron nitride (cBN) crystallites, could be one cause for the increase in the intensity of IR absorption after residual compressive stress relaxation. Theoretical derivation is in good agreement with the experimental results concerning the IR absorption intensity and the Ar interstitial atom concentration in cubic boron nitride films measured by energy dispersion X-ray spec- troscopy. Our results also suggest that the interstitial Ar is the origin of residual compressive stress accumulation in plasma enhanced cBN film deposition.
文摘Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort.Manipulating the coated quasi-particles between the composite components offers a platform to study the advanced thermoregulatory textiles.Here,we propose that coating the hyperbolic polariton can be an effective tool to tune infrared absorption in hexagonal boron nitride-coated silk composite.Remarkably,we achieve significant tuning of the infrared absorption efficiency of silk fibrils through the designed hexagonal boron nitride film.The underlying mechanism is related to resonance coupling between hyperbolic phonon polaritons.We find a notably high infrared absorption efficiency,nearly 3 orders larger than that without hBN coating,which can be achieved in our composite system.Our results indicate the promising future of advanced polariton-coated textiles and open a pathway to guide the artificial-intelligence design of advanced functional textiles.
基金Supported by the High Technology Research and Development Programme of China.
文摘In situ infrared absorption spectroscopy has been measured for a hot filament diamond growth process. Absorption of CH4 and C2H2 species at 3050 cm-1 and 730 cm-1 were detected respectively. The absorption intensity of CH4 decreases while that of C2H2 increases as filament temperature is raised. The correlation between infrared absorption intensity and diamond growth rate or diamond film quality was found. High C2H2 or low CH4 concentration in the reaction region leads to high quality diamond film growth and high growth rate.
文摘In the theory calculation of lattice vibration, one acoustic and three optical branches were found to compose the phonon vibrating spectrum.Some isolated modes with frequencies lying outside the continuum branches will arise under the defect states.These local model results in the sharp peaks in the infrared absorption and Raman spectra.From calculation of the infrared absorption,the local mode with the infrared activity is obtained in the infrared absorption spectrum of MX compounds.
基金supported by the National Natural Science Foundation of China(Nos.62105097,12074105 and 11404102)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZC20230737)+1 种基金the Natural Science Foundation of Henan Province(No.232300421388)the Doctoral Scientific Research Start-Up Foundation of Henan Normal University(Nos.5101029470282 and 5101029170847)。
文摘We propose a modular designed over-coupled(OC)metasurface for the broadband surface-enhanced infrared absorption spectroscopy(SEIRAS)by analyzing the combined properties in the far field and near field.The customized sensors can independently modify the coupling mode,the resonance frequency,and the coupling efficiency by adjusting the vertical and horizontal structures and hybrid dielectric layers of the metasurface,respectively.Based on the independent regulation of the sensor properties,the influence of the detuning properties,the level of OC coupling,and the coupling efficiency of the signal amplification can be clearly presented through the single variable-controlling approach.These design principles are universal for customized sensors and herald possibilities for machine-learning-aided surface-enhanced infrared absorption(SEIRA)biosensing.
基金National Key R&D Program of China,Grant/Award Number:2022YFE0113000National Science Fund for Distinguished Young Scholars,Grant/Award Number:22025406。
文摘Surface chirality plays an important role in determining the biological effect,but the molecular nature beyond stereoselectivity is still unknown.Herein,through surface-enhanced infrared absorption spectroscopy,electrochemistry,and theoretical simulations,we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole poten-tial at chiral interface and their different interfacial interactions,which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration,thereby regulating the interaction between amyloid-βpeptide(Aβ)and N-isobutyryl-cysteine(NIBC).Water on L-NIBC interface which shows stronger positive dipole potential weakens the negative surface potential,but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L-NIBC and resultedfiber aggregate.Conversely,electrostatic interaction between Aβ42 and D-NIBC induces spherical oligomer.Thesefindings provide new insight into molecular nature of chirality-regulated biological effect.
基金This work was supported by grants from the National Natural Science Foundation of China(21327902,21635004,21675079,21627806).
文摘Attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)has recently been proven to be a powerful tool for bioanalysis.It enables in situ and in real-time observation of dynamic processes occurring on specific interface,revealing rich structural and functional information of biomolecules at sub monolayer level.The aim of this general review was to give an overview of the cutting edge applications of ATRSEIRAS.We start with description of the basic configuration of the standard ATR-SEIRAS platform.The enhanced mechanisms and methods to fabricate enhanced substrates are then presented.We discuss the recent developments,challenges and applications of ATR-SEIRAS in bioanalysis,mainly focusing on DNA analysis,protein behavior and cell properties.Finally,further development of the ATRSEIRAS technique with enhanced sensitivity,improved time and spatial resolutions will be prospected.
文摘An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface terminals respectively.The chain-length of alkane exceeds the bond-length of surface functionalities T(x=O,-OH,-F)so as to introduce intra-flake and inter-flake strains into Ti_(3)C_(2)T_(x)MXene.The electronic microscopy(TEM/AFM)shows obvious edge-fold and tensile/compressive deformation of flake.The alkane termination increases the intrinsic absorbance of Ti_(3)C_(2)T_(x)MXene from no more than 50%up to more than 99%in the mid-wavelength in⁃frared region from 2.5μm to 4.5μm.Such an absorption enhancement attributes to the reduce of infrared reflec⁃tance of Ti_(3)C_(2)T_(x)MXene.The C-H bond skeleton vibration covers the aforementioned region and partially reduces the surface reflectance.Meanwhile,the flake deformation owing to edge-fold and tensile/compression increases the specific surface area so as to increase the absorption as well.These results have applicable value in the area of mid-infrared camouflage.
基金supported by A*STAR under the“Nanosystems at the Edge”program(Grant No.A18A4b0055)Ministry of Education(MOE)under the research grant of R-263-000-F18-112/A-0009520-01-00+1 种基金National Research Foundation Singapore grant CRP28-2022-0038the Reimagine Re-search Scheme(RRSC)Project(Grant A-0009037-02-00&A0009037-03-00)at National University of Singapore.
文摘Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.
基金This work was supported by the Natural Sciences and Engineering Research Council of Canada and Nortel Networks.
文摘A series of near infrared (NIR) absorbing dinuclear ruthenium dicarbonylhydrazine complexes (DCH-Ru),[{Ru(bpy)_2)_2μ-DCH]^(n+) (where bpy = 2,2'-bipyridinc and n = 2, 3 or 4), were prepared. The DCH-Ru complexes areelectrochromic in the NIR region with a high absorption coefficient at 1550-1600 nm typically over 10000 M^(-1)cm^(-1). DCH-Ru complex polymers with good NIR electrochromic properties were also obtained and processed to make a device foroptical attenuation at a wavelength of 1550 nm. The potential of these DCH-Ru polymers for use in a variable opticalattenuator has been demonstrated with an attenuating power at the 1550-nm telecommunication wavelength over 7.0 dB permicron of polymer film thickness. Other classes of NIR active materials are the pentacenediquinones and the correspondingpoly(ether pentacenediquinone)s. These polymers can be electrochemically reduced to the corresponding semiquinone(radical anion) having NIR absorption within a telecom window (e. g., 1310 nm).
基金This research was funded by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada(JL:RGPIN-2022-03958AC:RGPIN-2022-04238).
文摘This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.
文摘The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV.