期刊文献+
共找到35,153篇文章
< 1 2 250 >
每页显示 20 50 100
Neuroinflammation strokes the brain:A double-edged sword in ischemic stroke 被引量:1
1
作者 Giorgia Lombardozzi Vanessa Castelli +2 位作者 Chiara Giorgi Annamaria Cimini Michele d’Angelo 《Neural Regeneration Research》 2026年第5期1715-1722,共8页
Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response pla... Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response plays a crucial role in worsening brain injury.Neuroinflammation,a key player in the pathophysiology of stroke,has a dual role.In the acute phase of stroke,neuroinflammation exacerbates brain injury,contributing to neuronal damage and blood–brain barrier disruption.This aspect of neuroinflammation is associated with poor neurological outcomes.Conversely,in the recovery phase following stroke,neuroinflammation facilitates brain repair processes,including neurogenesis,angiogenesis,and synaptic plasticity.The transition of neuroinflammation from a harmful to a reparative role is not well understood.Therefore,this review seeks to explore the mechanisms underlying this transition,with the goal of informing the development of therapeutic interventions that are both time-and context-specific.This review aims to elucidate the complex and dual role of neuroinflammation in stroke,highlighting the main actors,biomarkers of the disease,and potential therapeutic approaches. 展开更多
关键词 brain repair euinflammation inflammation ISCHEMIA mechanisms MICROGLIA oxidative stress stroke therapeutic approaches
暂未订购
Effects of quercetin and its derivatives in in vivo models of neuroinflammation:A systematic review and meta-analysis
2
作者 Michele Goulart dos Santos Bruno Dutra Arbo Mariana Appel Hort 《Neural Regeneration Research》 2026年第5期1783-1792,共10页
Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammat... Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammatory drugs,which have a range of serious adverse effects.As an alternative,naturally derived molecules such as quercetin and its derivatives show promising anti-inflammatory properties and beneficial effects on various physiological functions.Our objective was to synthesize the evidence on the anti-inflammatory effect of quercetin and its derivatives in in vivo models,in the face of neuroinflammatory insults induced by lipopolysaccharide,through a systematic review and meta-analysis.A search of the preclinical literature was conducted across four databases(Pub Med,Web of Science,Scielo,and Google Scholar).Studies were selected based on inclusion and exclusion criteria,assessed for methodological quality using CAMARADES,and risk of bias using the SYRCLE tool,and data were extracted from the studies.The quantitative assessment of quercetin effects on the expression of pro-inflammatory cytokines and microgliosis was performed through a meta-analysis.A total of 384 potentially relevant articles were identified,of which 11 studies were included in the analysis.The methodological quality was assessed,resulting in an average score of 5.8/10,and the overall risk of bias analysis revealed a lack of methodological clarity in most studies.Furthermore,through the meta-analysis,it was observed that treatment with quercetin statistically reduces pro-inflammatory cytokines,such as tumor necrosis factor alpha,interleukin 6,interleukin 1β(n=89;SMD=–2.00;95%CI:–3.29 to–0.71),and microgliosis(n=33;SMD=–2.56;95%CI:–4.07 to–1.10).In terms of underlying mechanisms,quercetin and its derivatives exhibit antioxidant and anti-apoptotic properties,possibly through the nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 pathways,increasing the expression of antioxidant enzymes and reducing reactive species,and modulating the caspase pathway,increasing levels of anti-apoptotic proteins and decreasing proapoptotic proteins.Quercetin and its derivatives exhibit highly pleiotropic actions that simultaneously contribute to preventing neuroinflammation.However,despite promising results in animal models,future directions should focus on well-designed clinical studies to assess the safety,bioavailability,and efficacy of quercetin and its derivatives in humans.Additionally,standardization of methods and dosages in studies is crucial to ensure consistency of findings and optimize their application in clinical settings. 展开更多
关键词 α-glycosyl isoquercitrin alternative therapies ANTI-APOPTOTIC antioxidant chronic inflammation CYTOKINES inflammatory mediators neuronal damage QUERCITRIN
暂未订购
Associations of indoor airborne microbiome with systemic inflammation in the context of indoor particulate matter pollution and the metabolic mechanisms
3
作者 Yetong Zhao Luyi Li +8 位作者 Wenlou Zhang Shan Liu Wanzhou Wang Xuezhao Ji Di Yang Lifang Zhao Zhihong Zhang Xinbiao Guo Furong Deng 《Journal of Environmental Sciences》 2026年第1期187-198,共12页
Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and ... Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and systemic inflammation,as well as whether this association is modified by indoor particulate matter and the underlying mechanisms.In this prospective repeated-measure study among 66 participants,indoor airborne mi-crobiome was characterized using amplicon sequencing and qPCR.Indoor fine particulate matter(PM_(2.5))and inhalable particulate matter(PM10)were measured.Systemic inflammatory biomarkers were assessed,including white blood cell(WBC),neutrophil(NEUT),monocyte,eosinophil counts,and their proportions.Targeted serum amino acid metabolomics were conducted to explore the underlying mechanisms.Linear mixed-effect models re-vealed that bacterial and fungal Simpson diversity were significantly associated with decreased WBC and NEUT.For example,for each interquartile range increase in the bacterial Simpson diversity,WBC and NEUT changed by-4.53%(95%CI:-8.25%,-0.66%)and-5.95%(95%CI:-11.3%,-0.27%),respectively.Notably,increased inflammatory risks of airborne microbial exposure were observed when indoor PM_(2.5) and PM10 levels were below the WHO air quality guidelines.Mediation analyses indicated that dopamine metabolism partially mediated the anti-inflammatory effects of fungal diversity exposure.Overall,our study indicated protection from a diverse indoor microbial environment on cardiovascular health and proposed an underlying mechanism through amino acid metabolism.Additionally,health risks associated with microbial exposure deserve more attention in con-texts of low indoor particulate matter pollution.Further research is necessary to fully disentangle the complex relationships between indoor microbiome,air pollutants,and human health. 展开更多
关键词 Indoor air BIOAEROSOLS MICROBIOME Particulate matter Systemic inflammation Amino acid metabolism
原文传递
Immunoproteasome as a therapeutic target in obesity-related brain inflammation and metabolic disorders
4
作者 Javiera Alvarez-Indo Nicolas Albornoz +1 位作者 Andrea Soza Patricia V.Burgos 《Neural Regeneration Research》 2026年第4期1554-1555,共2页
Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,par... Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012). 展开更多
关键词 palmitic acid saturated fatsparticularly palmitic acidare IMMUNOPROTEASOME metabolic disorders insulin resistance qiu glucose metabolism brain inflammation
暂未订购
Adenosine:A key player in neuroinflammation
5
作者 Qilin Guo Rhea Seth Wenhui Huang 《Neural Regeneration Research》 2026年第4期1556-1557,共2页
Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson'... Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson's disease(PD).Prior studies identified cytokines(e.g.,tumor necrosis factor[TNF],interleukin[IL]-1,and IL-6)delivered by resident glial cells and brain-invading peripheral immune cells as the major contributor to neuroinflammation(Becher et al.,2017).In addition to pro-inflammatory cytokines,elevated levels of extracellular purine molecules such as adenosine triphosphate(ATP)and adenosine can be detected upon any pathological insults(e.g.,injury,ischemia,and hypoxia),contributing to the progression of neurological disorders(Borea et al.,2017). 展开更多
关键词 ADENOSINE sepsis associated encephalopathy central nervous system cns NEUROinflammation cerebral inflammation neurological disorders inflammatory response parkinsons disease pd prior
暂未订购
Effects and mechanisms of adipose tissue-derived extracellular vesicles in vascular inflammation and dysfunction
6
作者 Daphne Lintsen Bieke Broux 《Neural Regeneration Research》 2026年第5期2005-2006,共2页
Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated ... Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations. 展开更多
关键词 pathological protein aggregations vascular inflammation NEUROinflammation neurodegenerative diseasessuch multiple sclerosis Alzheimers disease adipose tissue derived extracellular vesicles alzheimers diseaseit
暂未订购
Chitosan alleviates symptoms of Parkinson's disease by reducing acetate levels, which decreases inflammation and promotes repair of the intestinal barrier and blood–brain barrier
7
作者 Yinying Wang Rongsha Chen +7 位作者 Guolin Shi Xinwei Huang Ke Li Ruohua Wang Xia Cao Zhongshan Yang Ninghui Zhao Jinyuan Yan 《Neural Regeneration Research》 2026年第1期377-391,共15页
Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse... Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse model of Parkinson's disease and found that it effectively reduced dopamine neuron injury, neurotransmitter dopamine release, and motor symptoms. These neuroprotective effects of chitosan were related to bacterial metabolites, specifically shortchain fatty acids, and chitosan administration altered intestinal microbial diversity and decreased short-chain fatty acid production in the gut. Furthermore, chitosan effectively reduced damage to the intestinal barrier and the blood–brain barrier. Finally, we demonstrated that chitosan improved intestinal barrier function and alleviated inflammation in both the peripheral nervous system and the central nervous system by reducing acetate levels. Based on these findings, we suggest a molecular mechanism by which chitosan decreases inflammation through reducing acetate levels and repairing the intestinal and blood–brain barriers, thereby alleviating symptoms of Parkinson's disease. 展开更多
关键词 ACETATE adenosine 5′-monophosphate-activated protein kinase blood–brain barrier CHITOSAN dopamine neurons inflammation intestinal barrier Parkinson's disease peroxisome proliferator-activated receptor delta short-chain fatty acids
暂未订购
Dysregulated insulin signaling and inflammation contribute to the pathogenesis of Alzheimer’s disease:From animal models to human cells
8
作者 Marcus Elo Rytter Cecilie Amalie Brøgger Svane +1 位作者 Joachim Størling Wenqiang Chen 《Neural Regeneration Research》 2026年第3期1126-1127,共2页
The shared links between Alzheimer’s disease and type 2 diabetes mellitus:Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2DM)are two prevalent conditions that come with substantial daily struggles.Emerging evi... The shared links between Alzheimer’s disease and type 2 diabetes mellitus:Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2DM)are two prevalent conditions that come with substantial daily struggles.Emerging evidence highlights that these diseases share similar pathophysiological features,including insulin resistance and chronic inflammation,which contribute to their rapid progression(Chen et al.,2022).Insulin resistance,a hallmark of T2DM,has been suggested to exacerbate neurodegeneration in AD.Similarly,chronic low-grade inflammation in T2DM parallels with neuroinflammation,which is observed in AD,suggesting overlapping pathophysiological mechanisms in T2DM and AD. 展开更多
关键词 alzheimer s disease chronic inflammationwhich type diabetes mellitus alzheimer s disease ad inflammation exacerbate neurodegeneration Alzheimers disease insulin resistance type diabetes mellitus t dm
暂未订购
Context-dependent role of sirtuin 2 in inflammation 被引量:1
9
作者 NoemíSola-Sevilla Maider Garmendia-Berges +1 位作者 MCarmen Mera-Delgado Elena Puerta 《Neural Regeneration Research》 SCIE CAS 2025年第3期682-694,共13页
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has... Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases. 展开更多
关键词 INTERFERON inflammation LIPOPOLYSACCHARIDE NEUROinflammation NLRP3 nuclear factorκB sirtuin 2
暂未订购
Targeting sepsis through inflammation and oxidative metabolism 被引量:1
10
作者 Salena Jacob Sanjana Ann Jacob Joby Thoppil 《World Journal of Critical Care Medicine》 2025年第1期69-81,共13页
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most seve... Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates.There have been significant advances in sepsis management mainly focusing on early identification and therapy.However,complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e.,systemic inflammatory response syndrome criteria,sequential organ failure assessment(SOFA),or quick SOFA.These limitations have underscored the modest progress in reducing sepsis-related mortality.This review will focus on novel therapeutics such as oxidative stress targets,cytokine modulation,endothelial cell modulation,etc.,that are being conceptualized for the management of sepsis and septic shock. 展开更多
关键词 SEPSIS inflammation Oxidative Metabolism INFECTION Reactive oxygen species
暂未订购
Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome:Focusing on inflammation and molecular mechanisms 被引量:2
11
作者 Mohammad Yasin Zamanian Hamidreza Zafari +5 位作者 Maria K.Osminina Alla A.Skakodub Raed Fanoukh Aboqader Al-Aouadi Maryam Golmohammadi Nikta Nikbakht Iman Fatemi 《Animal Models and Experimental Medicine》 2025年第1期5-19,共15页
Rheumatoid arthritis(RA)is a chronic autoimmune disease that affects approxi-mately 0.46%of the global population.Conventional therapeutics for RA,including disease-modifying antirheumatic drugs(DMARDs),nonsteroidal a... Rheumatoid arthritis(RA)is a chronic autoimmune disease that affects approxi-mately 0.46%of the global population.Conventional therapeutics for RA,including disease-modifying antirheumatic drugs(DMARDs),nonsteroidal anti-inflammatory drugs(NSAIDs),and corticosteroids,frequently result in unintended adverse effects.Dexamethasone(DEX)is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties.Liposomal delivery of DEX,particu-larly when liposomes are surface-modified with targeting ligands like peptides or sialic acid,can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity.This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA.Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models,reduces joint inflammation and damage,and alleviates cartilage destruction compared to free DEX.The liposomal formulation also shows better hemocompatibility,fewer adverse effects on body weight and immune organ index,and a longer circulation time with higher bioavailability.The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α(TNF-α)and B-cell-activating factor(BAFF),which are key players in the pathogenesis of RA.Additionally,liposomal DEX can induce the expres-sion of anti-inflammatory cytokines like interleukin-10(IL-10),which has significant anti-inflammatory and immunoregulatory properties.The findings suggest that lipo-somal DEX represents a promising candidate for effective and safe RA therapy,with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug. 展开更多
关键词 DEXAMETHASONE inflammation LIPOSOME rheumatoid arthritis TNF-α
暂未订购
Safranal Ameliorates Renal Damage,Inflammation,and Podocyte Injury in Membranous Nephropathy via SIRT/NF-κB Signalling 被引量:2
12
作者 Yan Bao Ya-mei Ge +3 位作者 Zheng Wang Hong-yun Wang Qiong Wang Jun Yuan 《Current Medical Science》 2025年第2期288-300,共13页
Objective Safranal is a natural product from saffron(Crocus sativus L.)with anti-inflammatory and nephroprotective potential.This study aimed to explore the role of safranal in a cationic bovine serum albumin(C-BSA)-i... Objective Safranal is a natural product from saffron(Crocus sativus L.)with anti-inflammatory and nephroprotective potential.This study aimed to explore the role of safranal in a cationic bovine serum albumin(C-BSA)-induced rat model of membranous glomerulonephritis(MGN).Methods After model establishment,Sprague–Dawley rats were administered 100 or 200 mg/kg safranal by gavage.A biochemical analyser was used to measure the urine protein levels and serum levels of renal function parameters.Hematoxylin–eosin and immunofluorescence staining of kidney tissues were performed to examine histopathological changes and assess the expression of IgG,C3,and Sirt1.Western blotting was performed to measure the protein levels of podocin,nephrin,Sirt1,and factors involved in the NF-κB/p65 pathway.Inflammatory cytokine levels in renal homogenates were determined by ELISA.Results Safranal at 100 or 200 mg/kg reduced kidney weight(2.07±0.15 g and 2.05±0.15 g)and the kidney somatic index(0.83±0.08%and 0.81±0.08%)in MGN rats compared with those in the model group without drug administration(2.62±0.17 g and 1.05±0.1%).C-BSA increased the urine protein level to 117.68±10.52 mg/day(compared with the sham group,5.03±0.45 mg/day),caused dysregulation of renal function indicators,and induced glomerular expansion and inflammatory cell infiltration in the rat kidney samples.All the biochemical and histological changes were improved by safranal administration.Safranal at two doses also increased the fluorescence intensities of IgG(0.1±0.009 and 0.088±0.008)and C3(0.065±0.006 and 0.048±0.004)compared with those in the MGN group(0.15±0.013 and 0.086±0.008).Additionally,safranal reversed the downregulation of podocin,nephrin,and Wilms tumor protein-1(WT1)levels and reversed the high inflammatory cytokine levels in MGN rats.Mechanistically,safranal activated Sirt1 signalling to interfere with NF-κB signalling in the kidney tissues of MGN rats.Conclusions Safranal ameliorates renal damage,inflammation,and podocyte injury in MGN by upregulating SIRT1 and inhibiting NF-κB signalling. 展开更多
关键词 inflammation Membranous nephropathy Nuclear factor kappa B SAFRANAL Sirtuin type-1
暂未订购
Protective effects of naringin against oxidative stress,inflammation,apoptosis,and DNA damage in rats with doxorubicin-induced hepatotoxicity 被引量:1
13
作者 Pelin Durukan Azman Serkan Yildirim +4 位作者 Emin Sengul Mohamad Warda Samet Tekin Furkan Aykurt Ali Cinar 《Asian Pacific Journal of Tropical Biomedicine》 2025年第7期285-295,I0005,共12页
Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treat... Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treated with 50 mg/kg and 100 mg/kg of naringin by gastric lavage for 10 days,as well as the group treated with 100 mg/kg of naringin alone.Liver and serum samples were collected for biochemical,histopathological,and molecular analyses,including liver enzyme activity,oxidative stress markers,inflammation,apoptosis-related proteins,and DNA damage indicators.Results:Naringin attenuated DOX-induced elevation in liver enzyme activity and inflammation markers while enhancing antioxidant activities.Naringin also activated the Nrf2-HO-1 signaling pathway,with the most pronounced effect in the high-dose naringin group.In addition,naringin modulated apoptotic signaling by downregulating the expression of PI3K-AKT and BAX,and upregulating Bcl-2,as well as reduced the level of 8-OHdG.Histopathological evaluation showed that DOX-induced structural liver alterations,such as cellular degeneration and necrosis,were notably attenuated by naringin treatment.Conclusions:Naringin treatment exerts protective effects against DOX-induced liver injury through its antioxidative,anti-inflammatory,and anti-apoptotic effects. 展开更多
关键词 DOXORUBICIN HEPATOTOXICITY inflammation NARINGIN Oxidative stress
暂未订购
Shenlian Extract Protects against Ultrafine Particulate Matter-Aggravated Myocardial Ischemic Injury by Inhibiting Inflammation and Cell Apoptosis 被引量:1
14
作者 Shuiqing Qu Yan Liang +7 位作者 Shuoqiu Deng Yu Li Yue Dai Chengcheng Liu Tuo Liu Luqi Wang Lina Chen Yujie Li 《Biomedical and Environmental Sciences》 2025年第2期206-218,共13页
Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extra... Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extract possesses anti-inflammatory and antiapoptotic properties and has a promising protective effect at all stages of the atherosclerotic disease process.In this study,we aimed to investigated whether SL improves UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.Methods We established a mouse model of MI+UPM.Echocardiographic measurement,measurement of myocardialinfarct size,biochemical analysis,enzyme-linked immunosorbent assay(ELISA),histopathological analysis,Transferase dUTP Nick End Labeling(TUNEL),Western blotting(WB),Polymerase Chain Reaction(PCR)and so on were used to explore the anti-inflammatory and antiapoptotic effects of SL in vivo and in vitro.Results SL treatment can attenuate UPM-induced cardiac dysfunction by improving left ventricular ejection fraction,fractional shortening,and decreasing cardiac infarction area.SL significantly reduced the levels of myocardial enzymes and attenuated UPM-induced morphological alterations.Moreover,SL significantly reduced expression levels of the inflammatory cytokines IL-6,TNF-α,and MCP-1.UPM further increased the infiltration of macrophages in myocardial tissue,whereas SL intervention reversed this phenomenon.UPM also triggered myocardial apoptosis,which was markedly attenuated by SL treatment.The results of in vitro experiments revealed that SL prevented cell damage caused by exposure to UPM combined with hypoxia by reducing the expression of the inflammatory factor NF-κB and inhibiting apoptosis in H9c2 cells.Conclusion Overall,both in vivo and in vitro experiments demonstrated that SL attenuated UPMaggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.The mechanisms were related to the downregulation of macrophages infiltrating heart tissues. 展开更多
关键词 Ultrafine particulate matter Shenlian extract inflammation Apoptosis MACROPHAGE
暂未订购
Gut microbiota modulate intestinal inflammation by endoplasmic reticulum stress-autophagy-cell death signaling axis 被引量:1
15
作者 Feiyang He Yi Zheng +5 位作者 Mabrouk Elsabagh Kewei Fan Xia Zha Bei Zhang Mengzhi Wang Hao Zhang 《Journal of Animal Science and Biotechnology》 2025年第4期1443-1460,共18页
The intestinal tract,a complex organ responsible for nutrient absorption and digestion,relies heavily on a balanced gut microbiome to maintain its integrity.Disruptions to this delicate microbial ecosystem can lead to... The intestinal tract,a complex organ responsible for nutrient absorption and digestion,relies heavily on a balanced gut microbiome to maintain its integrity.Disruptions to this delicate microbial ecosystem can lead to intestinal inflammation,a hallmark of inflammatory bowel disease(IBD).While the role of the gut microbiome in IBD is increasingly recognized,the underlying mechanisms,particularly those involving endoplasmic reticulum(ER)stress,autophagy,and cell death,remain incompletely understood.ER stress,a cellular response to various stressors,can trigger inflammation and cell death.Autophagy,a cellular degradation process,can either alleviate or exacerbate ER stress-induced inflammation,depending on the specific context.The gut microbiome can influence both ER stress and autophagy pathways,further complicating the interplay between these processes.This review delves into the intricate relationship between ER stress,autophagy,and the gut microbiome in the context of intestinal inflammation.By exploring the molecular mechanisms underlying these interactions,we aim to provide a comprehensive theoretical framework for developing novel therapeutic strategies for IBD.A deeper understanding of the ER stress-autophagy axis,the gut microbial-ER stress axis,and the gut microbial-autophagy axis may pave the way for targeted interventions to restore intestinal health and mitigate the impact of IBD. 展开更多
关键词 AUTOPHAGY Cell death Endoplasmic reticulum stress Gut microbes Intestinal inflammation
暂未订购
Tm4sf19 inhibition ameliorates inflammation and bone destruction in collagen-induced arthritis by suppressing TLR4-mediated inflammatory signaling and abnormal osteoclast activation 被引量:1
16
作者 Sujin Park Kwiyeom Yoon +19 位作者 Eunji Hong Min Woo Kim Min Gi Kang Seiya Mizuno Hye Jin Kim Min-Jung Lee Hee Jae Choi Jin Sun Heo Jin Beom Bae Haein An Naim Park Hyeyeon Park Pyunggang Kim Minjung Son Kyoungwha Pang Je Yeun Park Satoru Takahashi Yong Jung Kwon Dong-Woo Kang Seong-Jin Kim 《Bone Research》 2025年第3期747-759,共13页
Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19... Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19 is important for its function in osteoclast differentiation,and LEL-Fc,a competitive inhibitor of Tm4sf19,effectively suppresses osteoclast multinucleation and prevent bone loss associated with osteoporosis.This study aimed to investigate the role of Tm4sf19 in RA,an inflammatory and abnormal osteoclast disease,using a mouse model of collagen-induced arthritis(CIA).Tm4sf19 expression was observed in macrophages and osteoclasts within the inflamed synovium,and Tm4sf19 expression was increased together with inflammatory genes in the joint bones of CIA-induced mice compared with the sham control group.Inhibition of Tm4sf19 by LEL-Fc demonstrated both preventive and therapeutic effects in a CIA mouse model,reducing the CIA score,swelling,inflammation,cartilage damage,and bone damage.Knockout of Tm4sf19 gene or inhibition of Tm4sf19 activity by LEL-Fc suppressed LPS/IFN-γ-induced TLR4-mediated inflammatory signaling in macrophages.LEL-Fc disrupted not only the interaction between Tm4sf19 and TLR4/MD2,but also the interaction between TLR4 and MD2.μCT analysis showed that LEL-Fc treatment significantly reduced joint bone destruction and bone loss caused by hyperactivated osteoclasts in CIA mice.Taken together,these findings suggest that LELFc may be a potential treatment for RA and RA-induced osteoporosis by simultaneously targeting joint inflammation and bone destruction caused by abnormal osteoclast activation. 展开更多
关键词 TLR osteoclast activation rheumatoid arthritis ra inflammation collagen induced arthritis rheumatoid arthritis autoimmune disease large extracellular loop lel
暂未订购
Yishen Tongluo formula (益肾通络方) ameliorates kidney injury via modulating inflammation and apoptosis in streptozotocin-induced diabetic kidney disease mice 被引量:1
17
作者 YUAN Jiayao WU Suhui +3 位作者 MENG Yufan LI Hanbing LI Genlin XU Jiangyan 《Journal of Traditional Chinese Medicine》 2025年第2期254-265,共12页
OBJECTIVE:To investigate the effect and mechanism of Yishen Tongluo formula(益肾通络方,YSTLF)in streptozotocin-induced diabetic kidney disease mice(DKD)mice.METHODS:Thirty Institute of Cancer Research mice(specific pa... OBJECTIVE:To investigate the effect and mechanism of Yishen Tongluo formula(益肾通络方,YSTLF)in streptozotocin-induced diabetic kidney disease mice(DKD)mice.METHODS:Thirty Institute of Cancer Research mice(specific pathogen free,SPF grade)were divided into five groups(n=6 per group):control,DKD model,DKD model with YSTLF(4.9 g/kg),DKD model with YSTLF(9.8 g/kg),and DKD model with captopril.DKD was induced through a single intraperitoneal injection of streptozotocin(150 mg/kg).Body weight,fasting blood glucose and urine C-peptide levels were measured to assess metabolic regulation by YSTLF.Renal function was evaluated using indicators of glomerular and tubular health.Liver function was assessed by measuring aspartate aminotransferase and alanine aminotransferase levels.Renal pathological changes were examined using hematoxylin/eosin staining and transmission electron microscopy.Inflammatory and apoptosis-related factors were analyzed through enzyme-linked immunosorbent assay,immunohistochemistry,and Western blot analysis.RESULTS:In DKD mice,fasting blood glucose,Cpeptide,24-hour urine protein(UP)levels,and renal damage were elevated,accompanied by increased inflammation and apoptosis.YSTLF significantly reduced 24-hour UP and C-peptide levels and improved kidney and liver function in DKD mice.YSTLF also mitigated glomerular hypertrophy,basement membrane thickening,and podocyte foot process effacement.It upregulated the expression of the podocyte marker podocalyxin.Furthermore,YSTLF alleviated inflammation and apoptosis,likely by reducing the overexpression of monocyte chemoattractant protein(MCP-1),Bax,and Caspase-3 in the kidneys of DKD mice.CONCLUSIONS:These findings suggest that YSTLF ameliorates kidney injury by modulating the expression of inflammatory cytokine MCP-1 and the Bax/Caspase-3 apoptosis pathway,providing a potential therapeutic approach for DKD. 展开更多
关键词 diabetic nephropathies inflammation APOPTOSIS Yishen Tongluo formula
原文传递
Inflammation-related collagen fibril destruction contributes to temporomandibular joint disc displacement via nuclear factorkappa B activation 被引量:1
18
作者 Shengjie Cui Yanning Guo +8 位作者 Yu Fu Ting Zhang Jieni Zhang Yehua Gan Yanheng Zhou Yan Gu Eileen Gentleman Yan Liu Xuedong Wang 《International Journal of Oral Science》 2025年第2期221-232,共12页
Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanism... Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanisms by which destruction of inflamed collagen fibrils induces alterations in the mechanical properties and positioning of the TMJ disc.By constructing a rat model of TMJ arthritis,we observed anteriorly dislocated TMJ discs with aggravated deformity in vivo from five weeks to six months after a local injection of Freund’s complete adjuvant.By mimicking inflammatory conditions with interleukin-1 beta in vitro,we observed enhanced expression of collagen-synthesis markers in primary TMJ disc cells cultured in a conventional two-dimensional environment.In contrast,three-dimensional(3D)-cultivated disc cell sheets demonstrated the disordered assembly of inflamed collagen fibrils,inappropriate arrangement,and decreased Young’s modulus.Mechanistically,inflammation-related activation of the nuclear factor kappa-B(NF-κB)pathway occurs during the progression of TMJ arthritis.NF-κB inhibition reduced the collagen fibril destruction in the inflamed disc cell sheets in vitro,and early NF-κB blockade alleviated collagen degeneration and dislocation of the TMJ discs in vivo.Therefore,the NF-κB pathway participates in the collagen remodeling in inflamed TMJ discs,offering a potential therapeutic target for disc displacement. 展开更多
关键词 temporomandibular joint disc displacement destruction inflamed collagen fibrils rat model anteriorly dislocated tmj discs collagen fibril destruction temporomandibular joint inflammation arthritis
暂未订购
A rat model of adenoid hypertrophy constructed by using ovalbumin and lipopolysaccharides to induce allergy, chronic inflammation, and chronic intermittent hypoxia 被引量:1
19
作者 Anqi Liu Yixing Zhang +6 位作者 Yan Lin Xuejun Li Shuming Wang Wenyan Pu Xiuxiu Liu Zhiyan Jiang Zhen Xiao 《Animal Models and Experimental Medicine》 2025年第2期353-362,共10页
Background:Adenoid hypertrophy(AH)is a common pediatric disease that signifi-cantly impacts the growth and quality of life of children.However,there is no replica-ble and valid model for AH.Methods:An AH rat model was... Background:Adenoid hypertrophy(AH)is a common pediatric disease that signifi-cantly impacts the growth and quality of life of children.However,there is no replica-ble and valid model for AH.Methods:An AH rat model was developed via comprehensive allergic sensitization,chronic inflammation induction,and chronic intermittent hypoxia(CIH).The modeling process involved three steps:female Sprague-Dawley rats(aged 4-5 weeks)were used for modeling.Allergen sensitization was induced via intraperitoneal administra-tion and intranasal provocation using ovalbumin(OVA);chronic nasal inflammation was induced through intranasal lipopolysaccharide(LPS)administration for sustained nasal irritation;CIH akin to obstructive sleep apnea/hypopnea syndrome was induced using an animal hypoxia chamber.Postmodel establishment,behaviors,and histologi-cal changes in nasopharynx-associated lymphoid tissue(NALT)and nasal mucosa were assessed.Arterial blood gas analysis and quantification of serum and tissue levels of(interleukin)IL-4 and IL-13,OVA-specific immunoglobulin E(sIgE),eosinophil cationic protein(ECP),tumor necrosis factor(TNF-α),IL-17,and transforming growth factor(TGF)-βwere conducted for assessment.The treatment group received a combination of mometasone furoate and montelukast sodium for a week and then was evaluated.Results:Rats exhibited notable nasal symptoms and hypoxia after modeling.Histopathological analysis revealed NALT follicle hypertrophy and nasal mucosa in-flammatory cell infiltration.Elevated IL-4,IL-13,IL-17,OVA-sIgE,ECP,and TNF-αlev-els and reduced TGF-βlevels were observed in the serum and tissue of model-group rats.After a week of treatment,the treatment group exhibited symptom and inflam-matory factor improvement.Conclusion:The model effectively simulates AH symptoms and pathological changes.But it should be further validated for genetic,immunological,and hormonal back-grounds in the currently used and other strains and species. 展开更多
关键词 allergic rhinitis hypoxia nasopharynx-associated lymphoid tissue rat model of adenoid hypertrophy upper respiratory inflammation
暂未订购
Xiahuo Pingwei San (夏藿平胃散) attenuated intestinal inflammation in dextran sulfate sodium-induced ulcerative colitis mice through inhibiting the receptor for advanced glycation end-products signaling pathway 被引量:1
20
作者 HUANG Jiaen LUO Qing +3 位作者 DONG Gengting PENG Weiwen HE Jianhong DAI Weibo 《Journal of Traditional Chinese Medicine》 2025年第2期311-325,共15页
OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-perf... OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF/MS)was utilized to identify the chemical composition and authenticate the active constituents of XHPWS,ensuring rigorous quality control across batches.A dextran sulfate sodium(DSS)-induced UC model was established in C57BL/6 mice,which were treated with XHPWS in vivo.The efficacy against UC was assessed by measuring parameters such as body weight,disease activity index(DAI)scores,and colon length.Levels of inflammatory cytokines,including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-alpha(TNF-α),in colonic tissue were evaluated using enzymelinked immunosorbent assay(ELISA).Histological analysis of colon sections was conducted using hematoxylin and eosin staining.A network pharmacology approach was employed to explore the mechanisms of XHPWS and to predict its potential targets in UC treatment.Predicted protein expressions in colonic tissue were validated using immune-ohistochemistry(IHC)and Western blotting techniques.RESULTS:XHPWS effectively alle via ted DSS-induced UC symptoms in mice,as evidenced by restored body weight,reduced colon shortening,and decreased DAI scores.Histopathological examination revealed that XHPWS significantly reduced intestinal inflammatory infiltration,restored intestinal epithelial permeability,and increased goblet cell count.Network pharmacology analysis identified 63 active compounds in XHPWS and suggested that it might target 35 potential proteins associated with UC treatment.Functional enrichment analysis indicated that the protective mechanism of XHPWS could be related to the advanced glycation end products-receptor for advanced glycation end products(AGE-RAGE)signaling pathway.Notably,quercetin,kaempferol,wogonin,and nobiletin,the main components of XHPWS,showed strong correlations with the core targets.Additionally,experimental validation demonstrated that XHPWS significantly decreased levels of inflammatory cytokines interleukin 6(IL-6),interleukin 1 beta(IL-1β),and tumor necrosis factor alpha(TNF-α)in UC mice,while downregulating the expression of proteins related to the AGE-RAGE pathway.CONCLUSION:Our study demonstrated that XHPWS effectively alle via tes colitis symptoms and inflammation in UC mice,potentially through the regulation of the AGE-RAGE pathway.These findings provide strong evidence for the therapeutic potential of XHPWS in UC treatment,thereby broadening its clinical applications. 展开更多
关键词 colitis ulcerative network pharmacology inflammation glycation end products advanced receptor for advanced glycation end products signal transduction Xiahuo Pingwei San
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部