Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response pla...Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response plays a crucial role in worsening brain injury.Neuroinflammation,a key player in the pathophysiology of stroke,has a dual role.In the acute phase of stroke,neuroinflammation exacerbates brain injury,contributing to neuronal damage and blood–brain barrier disruption.This aspect of neuroinflammation is associated with poor neurological outcomes.Conversely,in the recovery phase following stroke,neuroinflammation facilitates brain repair processes,including neurogenesis,angiogenesis,and synaptic plasticity.The transition of neuroinflammation from a harmful to a reparative role is not well understood.Therefore,this review seeks to explore the mechanisms underlying this transition,with the goal of informing the development of therapeutic interventions that are both time-and context-specific.This review aims to elucidate the complex and dual role of neuroinflammation in stroke,highlighting the main actors,biomarkers of the disease,and potential therapeutic approaches.展开更多
Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson'...Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson's disease(PD).Prior studies identified cytokines(e.g.,tumor necrosis factor[TNF],interleukin[IL]-1,and IL-6)delivered by resident glial cells and brain-invading peripheral immune cells as the major contributor to neuroinflammation(Becher et al.,2017).In addition to pro-inflammatory cytokines,elevated levels of extracellular purine molecules such as adenosine triphosphate(ATP)and adenosine can be detected upon any pathological insults(e.g.,injury,ischemia,and hypoxia),contributing to the progression of neurological disorders(Borea et al.,2017).展开更多
Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated ...Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations.展开更多
The shared links between Alzheimer’s disease and type 2 diabetes mellitus:Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2DM)are two prevalent conditions that come with substantial daily struggles.Emerging evi...The shared links between Alzheimer’s disease and type 2 diabetes mellitus:Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2DM)are two prevalent conditions that come with substantial daily struggles.Emerging evidence highlights that these diseases share similar pathophysiological features,including insulin resistance and chronic inflammation,which contribute to their rapid progression(Chen et al.,2022).Insulin resistance,a hallmark of T2DM,has been suggested to exacerbate neurodegeneration in AD.Similarly,chronic low-grade inflammation in T2DM parallels with neuroinflammation,which is observed in AD,suggesting overlapping pathophysiological mechanisms in T2DM and AD.展开更多
Epilepsy is a complex neurological disorder aggravated by chronic neuroinflammation largely driven by reactive astrocytes.These cells promote epileptogenesis through persistent cytokine secretion and glial scar format...Epilepsy is a complex neurological disorder aggravated by chronic neuroinflammation largely driven by reactive astrocytes.These cells promote epileptogenesis through persistent cytokine secretion and glial scar formation.Current antiepileptic drugs remain ineffective in targeting these mechanisms due to limited blood-brain barrier(BBB)permeability and poor astrocytic specificity.A transferrin-functionalized biomimetic nanotherapeutic loaded with resveratrol(RN@RTA)was developed to regulate astrocyte-mediated inflammation by activating sirtuin 1(SIRT1)and suppressing the mitogen-activated protein kinase/nuclear factor Kappalight-chain-enhancer of activated B cells(MAPK/NF-κB)axis.Using in vitro BBB models,primary astrocytes,and a pilocarpine-induced chronic epilepsy mouse model,we evaluated the capacity of RN@RTA to cross the BBB,inhibit inflammatory signaling,and reduce seizure activity.Mechanistic assays included immunoprecipitation of NF-κB complexes,cytokine quantification,RNA sequencing,and histopathological assessments of glial and synaptic markers.RN@RTA achieved 82%uptake by hippocampal astrocytes and significantly reduced Il6,Tnf-α,and Nlrp3 expression.SIRT1 activation disrupted the NF-κB p65/p300 complex,leading to transcriptional repression of inflammatory genes and enhancement of autophagy.In vivo,seizure frequency decreased by 67%,synaptic structure was preserved,and astrogliosis was markedly alleviated.The findings demonstrate a dual regulatory mechanism in which RN@RTA suppresses neuroinflammatory signaling and restores neural homeostasis,offering a promising molecularly targeted approach for refractory epilepsy.展开更多
Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammat...Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammatory drugs,which have a range of serious adverse effects.As an alternative,naturally derived molecules such as quercetin and its derivatives show promising anti-inflammatory properties and beneficial effects on various physiological functions.Our objective was to synthesize the evidence on the anti-inflammatory effect of quercetin and its derivatives in in vivo models,in the face of neuroinflammatory insults induced by lipopolysaccharide,through a systematic review and meta-analysis.A search of the preclinical literature was conducted across four databases(Pub Med,Web of Science,Scielo,and Google Scholar).Studies were selected based on inclusion and exclusion criteria,assessed for methodological quality using CAMARADES,and risk of bias using the SYRCLE tool,and data were extracted from the studies.The quantitative assessment of quercetin effects on the expression of pro-inflammatory cytokines and microgliosis was performed through a meta-analysis.A total of 384 potentially relevant articles were identified,of which 11 studies were included in the analysis.The methodological quality was assessed,resulting in an average score of 5.8/10,and the overall risk of bias analysis revealed a lack of methodological clarity in most studies.Furthermore,through the meta-analysis,it was observed that treatment with quercetin statistically reduces pro-inflammatory cytokines,such as tumor necrosis factor alpha,interleukin 6,interleukin 1β(n=89;SMD=–2.00;95%CI:–3.29 to–0.71),and microgliosis(n=33;SMD=–2.56;95%CI:–4.07 to–1.10).In terms of underlying mechanisms,quercetin and its derivatives exhibit antioxidant and anti-apoptotic properties,possibly through the nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 pathways,increasing the expression of antioxidant enzymes and reducing reactive species,and modulating the caspase pathway,increasing levels of anti-apoptotic proteins and decreasing proapoptotic proteins.Quercetin and its derivatives exhibit highly pleiotropic actions that simultaneously contribute to preventing neuroinflammation.However,despite promising results in animal models,future directions should focus on well-designed clinical studies to assess the safety,bioavailability,and efficacy of quercetin and its derivatives in humans.Additionally,standardization of methods and dosages in studies is crucial to ensure consistency of findings and optimize their application in clinical settings.展开更多
Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and ...Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and systemic inflammation,as well as whether this association is modified by indoor particulate matter and the underlying mechanisms.In this prospective repeated-measure study among 66 participants,indoor airborne mi-crobiome was characterized using amplicon sequencing and qPCR.Indoor fine particulate matter(PM_(2.5))and inhalable particulate matter(PM10)were measured.Systemic inflammatory biomarkers were assessed,including white blood cell(WBC),neutrophil(NEUT),monocyte,eosinophil counts,and their proportions.Targeted serum amino acid metabolomics were conducted to explore the underlying mechanisms.Linear mixed-effect models re-vealed that bacterial and fungal Simpson diversity were significantly associated with decreased WBC and NEUT.For example,for each interquartile range increase in the bacterial Simpson diversity,WBC and NEUT changed by-4.53%(95%CI:-8.25%,-0.66%)and-5.95%(95%CI:-11.3%,-0.27%),respectively.Notably,increased inflammatory risks of airborne microbial exposure were observed when indoor PM_(2.5) and PM10 levels were below the WHO air quality guidelines.Mediation analyses indicated that dopamine metabolism partially mediated the anti-inflammatory effects of fungal diversity exposure.Overall,our study indicated protection from a diverse indoor microbial environment on cardiovascular health and proposed an underlying mechanism through amino acid metabolism.Additionally,health risks associated with microbial exposure deserve more attention in con-texts of low indoor particulate matter pollution.Further research is necessary to fully disentangle the complex relationships between indoor microbiome,air pollutants,and human health.展开更多
Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,par...Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012).展开更多
Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse...Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse model of Parkinson's disease and found that it effectively reduced dopamine neuron injury, neurotransmitter dopamine release, and motor symptoms. These neuroprotective effects of chitosan were related to bacterial metabolites, specifically shortchain fatty acids, and chitosan administration altered intestinal microbial diversity and decreased short-chain fatty acid production in the gut. Furthermore, chitosan effectively reduced damage to the intestinal barrier and the blood–brain barrier. Finally, we demonstrated that chitosan improved intestinal barrier function and alleviated inflammation in both the peripheral nervous system and the central nervous system by reducing acetate levels. Based on these findings, we suggest a molecular mechanism by which chitosan decreases inflammation through reducing acetate levels and repairing the intestinal and blood–brain barriers, thereby alleviating symptoms of Parkinson's disease.展开更多
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has...Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.展开更多
Atrial fibrillation(AF)is the most common arrhythmia in humans,affecting more than 40 million people worldwide.Radiofrequency catheter ablation(RFCA)was first introduced as a treatment for AF by Haïssaguerre M in...Atrial fibrillation(AF)is the most common arrhythmia in humans,affecting more than 40 million people worldwide.Radiofrequency catheter ablation(RFCA)was first introduced as a treatment for AF by Haïssaguerre M in the late 1990s.This procedure quickly became the treatment of choice,especially for symptomatic patients with AF refractory to medication.However,up to 45%of patients may experience AF recurrence within 12 months after RFCA.In this setting,AF recurrence is likely multifactorial,including atrial remodeling,local fibrosis or incomplete ablation due to failure in locating the trigger.Additionally,patients with obesity,sleep apnea,hypertension,or diabetes are at an increased risk of AF recurrence after RFCA.Inflammation is increasingly recognized as a potential key factor in AF recurrence and may arise both from the healing response of heart tissue post-ablation or from chronic low-grade inflammation,as observed in many risk factors.Here,we present an original study by Wang et al,which investigated the combination of the systemic immune-inflammation index-a marker developed to assess overall inflammatory status-and the APPLE score,designed to predict AF recurrence following RFCA.The study found that using both indicators together improved the accuracy of AF recurrence prediction.These findings underscore the significant role of inflammation in cardiovascular disease and demonstrated its impact on AF recurrence after RFCA.Further research is warranted to validate the combined use of these two scores in clinical settings for predicting AF recurrence following catheter ablation.展开更多
Atrial fibrillation(Afib)is a common arrhythmia with significant public health implications,affecting millions of individuals worldwide.Catheter ablation(CA)is an established treatment for drug-resistant Afib,yet recu...Atrial fibrillation(Afib)is a common arrhythmia with significant public health implications,affecting millions of individuals worldwide.Catheter ablation(CA)is an established treatment for drug-resistant Afib,yet recurrence remains a major concern,impacting quality of life in a significant portion of patients.Inflammation plays a critical role in the recurrence of Afib after ablation,with systemic inflammatory markers such as C-reactive protein being linked to higher recurrence rates.In this editorial,we discuss the study by Wang et al,published in the latest issue,which investigates the predictive role of the systemic immune inflammation index(SII)in Afib recurrence following radiofrequency CA.Elevated pre-ablation SII levels are identified as an independent predictor of recurrence,significantly enhancing the predictive power of the APPLE score.Integration of SII improved the APPLE score’s predictive performance,as shown by enhanced area under the curve,net reclassification improvement,and integrated discrimination improvement.This combined model highlights the importance of both structural and inflammatory factors in Afib recurrence,offering a more personalized approach to patient management.Additionally,the affordability and accessibility of SII enhance its practicality in clinical workflows.The study by Wang et al underscores the potential of integrating SII with existing scoring systems to refine risk stratification and optimize treatment strategies.Future research should validate these findings across diverse populations,explore limitations such as the potential influence of comorbidities on SII reliability,and investigate additional biomarkers to enhance predictive accuracy.展开更多
BACKGROUND Inflammatory bowel diseases(IBD),including ulcerative colitis(UC)and Crohn’s disease(CD),are chronic gastrointestinal disorders with an increasing global prevalence and significant healthcare impact.The ex...BACKGROUND Inflammatory bowel diseases(IBD),including ulcerative colitis(UC)and Crohn’s disease(CD),are chronic gastrointestinal disorders with an increasing global prevalence and significant healthcare impact.The exact etiology of this condition remains unclear.Neutrophils play a critical role in IBD pathogenesis.Translocator protein(TSPO),a mitochondrial protein linked to immune responses,has demonstrated potential as an inflammatory marker.However,its role in IBD remains underexplored.AIM To investigate the role of TSPO in IBD pathogenesis,particularly in neutrophils.METHODS Bioinformatics analyses of Gene Expression Omnibus datasets(GE75214,GSE94648,GSE156776)assessed TSPO expression in IBD patients.TSPO expression was evaluated in human IBD samples,neutrophiles and a chronic colitis mouse model.Neutrophil function was examined in 18 samples using reactive oxygen species(ROS)production and neutrophil extracellular trap(NET)formation assays.Positron emission tomography-computed tomography(PET-CT)imaging and histology from 12 mice revealed TSPO expression in colitis.PET-CT and immunofluorescence staining assessed TSPO expression in brain under neuroinflammation condition.RESULTS Bioinformatics analysis revealed elevated TSPO expression in the intestinal mucosa and peripheral blood of patients with IBD,especially in neutrophils.This was confirmed by quantitative real-time polymerase chain reaction and immunohistochemical staining,which showed a significant upregulation of TSPO in active IBD.Neutrophils from patients with UC and CD exhibited higher TSPO expression,which correlated with increased ROS production and NET formation.In a mouse model of dextran sodium sulfate-induced chronic colitis,TSPO was upregulated in the colonic neutrophils and brain tissues,indicating its systemic involvement.PET-CT imaging showed enhanced TSPO uptake in the inflamed colon and brain regions,particularly in the microglia,highlighting neuroinflammation.CONCLUSION TSPO is significantly upregulated in neutrophils in IBD and contributes to intestinal inflammation.Its elevated expression in gut highlights its potential as a promising therapeutic target for IBD.展开更多
BACKGROUND The hemoglobin-to-red cell distribution width ratio(HRR)is a recently intro-duced,easily accessible marker that provides insights into inflammation and the tumor vascular microenvironment.It has been sugges...BACKGROUND The hemoglobin-to-red cell distribution width ratio(HRR)is a recently intro-duced,easily accessible marker that provides insights into inflammation and the tumor vascular microenvironment.It has been suggested to have prognostic value for overall survival in various types of cancer,including urothelial carcinoma,lung cancer,and hepatocellular carcinoma.It has not yet been sufficiently invest-igated in colorectal cancers(CRC).AIM To investigate the prognostic significance of the HRR and other inflammation-based hematological markers in patients with metastatic CRC.Additionally,the study evaluated the impact of surgical interventions,particularly metastasectomy,and multiple clinical and laboratory parameters on overall survival.By iden-tifying low-cost,accessible prognostic indicators,this research seeks to support clinicians in optimizing treatment strategies and risk stratification for patients with CRC.METHODS In this retrospective study,patients diagnosed with CRC between January 2020 and December 2024 were analyzed.The impact of HRR in conjunction with inflammatory markers and a total of 22 different clinical and laboratory para-meters on overall survival were evaluated using univariate Cox regression and a multivariate model.Survival curves were visualized using Kaplan-Meier analysis.RESULTS A total of 155 patients with CRC were included in the study.The median age was 60 years,and 61.9%presented with de novo metastasis.In the receiver operating characteristic curve and area under the curve analysis performed to determine the optimal cutoff,the values were found to be 6.10 for carcinoembryonic antigen(CEA)(P=0.036),18.85 for platelet-to-red cell distribution width ratio(P=0.028),and 10.87 for platelet distribution width-to-lymphocyte ratio(P=0.028).For neutrophil-to-lymphocyte ratio,systemic immune-inflammation index(SII),platelet-to-lymphocyte ratio(PLR),monocyte-to-lymphocyte ratio,HRR,and carbohydrate antigen 19-9,an optimal cutoff could not be determined using the receiver operating characteristic-area under the curve analysis.Therefore,the median values were adopted as the cutoffs(3.09,835.96,177.50,0.380,0.824,and 21.6,respectively).Univariate analysis identified male gender(P=0.045),being under 65 years of age(P=0.001),history of metastas-ectomy(P=0.001),low serum CEA level(P=0.010),low PLR(P=0.024),low SII(P=0.010),and high HRR(P=0.025)as favorable prognostic factors for overall survival.In the multivariate model,being under 65 years of age[hazard ratio(HR)=1.59,95%confidence interval(CI):1.06-2.39,P=0.025],metastasectomy(HR=0.49,95%CI:0.29-0.85,P=0.011),CEA(HR=1.51,95%CI:1.0-2.28,P=0.048),and PLR(HR=1.63,95%CI:1.09-2.44,P=0.018)emerged as independent prognostic factors for overall survival,whereas gender,SII,and HRR did not retain statistical significance.CONCLUSION In conclusion,low HRR alone was a prognostic indicator.However,when modelled with other inflammatory and clinical parameters,it did not provide a sufficiently strong marker feature.展开更多
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most seve...Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates.There have been significant advances in sepsis management mainly focusing on early identification and therapy.However,complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e.,systemic inflammatory response syndrome criteria,sequential organ failure assessment(SOFA),or quick SOFA.These limitations have underscored the modest progress in reducing sepsis-related mortality.This review will focus on novel therapeutics such as oxidative stress targets,cytokine modulation,endothelial cell modulation,etc.,that are being conceptualized for the management of sepsis and septic shock.展开更多
Rheumatoid arthritis(RA)is a chronic autoimmune disease that affects approxi-mately 0.46%of the global population.Conventional therapeutics for RA,including disease-modifying antirheumatic drugs(DMARDs),nonsteroidal a...Rheumatoid arthritis(RA)is a chronic autoimmune disease that affects approxi-mately 0.46%of the global population.Conventional therapeutics for RA,including disease-modifying antirheumatic drugs(DMARDs),nonsteroidal anti-inflammatory drugs(NSAIDs),and corticosteroids,frequently result in unintended adverse effects.Dexamethasone(DEX)is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties.Liposomal delivery of DEX,particu-larly when liposomes are surface-modified with targeting ligands like peptides or sialic acid,can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity.This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA.Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models,reduces joint inflammation and damage,and alleviates cartilage destruction compared to free DEX.The liposomal formulation also shows better hemocompatibility,fewer adverse effects on body weight and immune organ index,and a longer circulation time with higher bioavailability.The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α(TNF-α)and B-cell-activating factor(BAFF),which are key players in the pathogenesis of RA.Additionally,liposomal DEX can induce the expres-sion of anti-inflammatory cytokines like interleukin-10(IL-10),which has significant anti-inflammatory and immunoregulatory properties.The findings suggest that lipo-somal DEX represents a promising candidate for effective and safe RA therapy,with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.展开更多
Objective Safranal is a natural product from saffron(Crocus sativus L.)with anti-inflammatory and nephroprotective potential.This study aimed to explore the role of safranal in a cationic bovine serum albumin(C-BSA)-i...Objective Safranal is a natural product from saffron(Crocus sativus L.)with anti-inflammatory and nephroprotective potential.This study aimed to explore the role of safranal in a cationic bovine serum albumin(C-BSA)-induced rat model of membranous glomerulonephritis(MGN).Methods After model establishment,Sprague–Dawley rats were administered 100 or 200 mg/kg safranal by gavage.A biochemical analyser was used to measure the urine protein levels and serum levels of renal function parameters.Hematoxylin–eosin and immunofluorescence staining of kidney tissues were performed to examine histopathological changes and assess the expression of IgG,C3,and Sirt1.Western blotting was performed to measure the protein levels of podocin,nephrin,Sirt1,and factors involved in the NF-κB/p65 pathway.Inflammatory cytokine levels in renal homogenates were determined by ELISA.Results Safranal at 100 or 200 mg/kg reduced kidney weight(2.07±0.15 g and 2.05±0.15 g)and the kidney somatic index(0.83±0.08%and 0.81±0.08%)in MGN rats compared with those in the model group without drug administration(2.62±0.17 g and 1.05±0.1%).C-BSA increased the urine protein level to 117.68±10.52 mg/day(compared with the sham group,5.03±0.45 mg/day),caused dysregulation of renal function indicators,and induced glomerular expansion and inflammatory cell infiltration in the rat kidney samples.All the biochemical and histological changes were improved by safranal administration.Safranal at two doses also increased the fluorescence intensities of IgG(0.1±0.009 and 0.088±0.008)and C3(0.065±0.006 and 0.048±0.004)compared with those in the MGN group(0.15±0.013 and 0.086±0.008).Additionally,safranal reversed the downregulation of podocin,nephrin,and Wilms tumor protein-1(WT1)levels and reversed the high inflammatory cytokine levels in MGN rats.Mechanistically,safranal activated Sirt1 signalling to interfere with NF-κB signalling in the kidney tissues of MGN rats.Conclusions Safranal ameliorates renal damage,inflammation,and podocyte injury in MGN by upregulating SIRT1 and inhibiting NF-κB signalling.展开更多
Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treat...Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treated with 50 mg/kg and 100 mg/kg of naringin by gastric lavage for 10 days,as well as the group treated with 100 mg/kg of naringin alone.Liver and serum samples were collected for biochemical,histopathological,and molecular analyses,including liver enzyme activity,oxidative stress markers,inflammation,apoptosis-related proteins,and DNA damage indicators.Results:Naringin attenuated DOX-induced elevation in liver enzyme activity and inflammation markers while enhancing antioxidant activities.Naringin also activated the Nrf2-HO-1 signaling pathway,with the most pronounced effect in the high-dose naringin group.In addition,naringin modulated apoptotic signaling by downregulating the expression of PI3K-AKT and BAX,and upregulating Bcl-2,as well as reduced the level of 8-OHdG.Histopathological evaluation showed that DOX-induced structural liver alterations,such as cellular degeneration and necrosis,were notably attenuated by naringin treatment.Conclusions:Naringin treatment exerts protective effects against DOX-induced liver injury through its antioxidative,anti-inflammatory,and anti-apoptotic effects.展开更多
Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extra...Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extract possesses anti-inflammatory and antiapoptotic properties and has a promising protective effect at all stages of the atherosclerotic disease process.In this study,we aimed to investigated whether SL improves UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.Methods We established a mouse model of MI+UPM.Echocardiographic measurement,measurement of myocardialinfarct size,biochemical analysis,enzyme-linked immunosorbent assay(ELISA),histopathological analysis,Transferase dUTP Nick End Labeling(TUNEL),Western blotting(WB),Polymerase Chain Reaction(PCR)and so on were used to explore the anti-inflammatory and antiapoptotic effects of SL in vivo and in vitro.Results SL treatment can attenuate UPM-induced cardiac dysfunction by improving left ventricular ejection fraction,fractional shortening,and decreasing cardiac infarction area.SL significantly reduced the levels of myocardial enzymes and attenuated UPM-induced morphological alterations.Moreover,SL significantly reduced expression levels of the inflammatory cytokines IL-6,TNF-α,and MCP-1.UPM further increased the infiltration of macrophages in myocardial tissue,whereas SL intervention reversed this phenomenon.UPM also triggered myocardial apoptosis,which was markedly attenuated by SL treatment.The results of in vitro experiments revealed that SL prevented cell damage caused by exposure to UPM combined with hypoxia by reducing the expression of the inflammatory factor NF-κB and inhibiting apoptosis in H9c2 cells.Conclusion Overall,both in vivo and in vitro experiments demonstrated that SL attenuated UPMaggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.The mechanisms were related to the downregulation of macrophages infiltrating heart tissues.展开更多
The intestinal tract,a complex organ responsible for nutrient absorption and digestion,relies heavily on a balanced gut microbiome to maintain its integrity.Disruptions to this delicate microbial ecosystem can lead to...The intestinal tract,a complex organ responsible for nutrient absorption and digestion,relies heavily on a balanced gut microbiome to maintain its integrity.Disruptions to this delicate microbial ecosystem can lead to intestinal inflammation,a hallmark of inflammatory bowel disease(IBD).While the role of the gut microbiome in IBD is increasingly recognized,the underlying mechanisms,particularly those involving endoplasmic reticulum(ER)stress,autophagy,and cell death,remain incompletely understood.ER stress,a cellular response to various stressors,can trigger inflammation and cell death.Autophagy,a cellular degradation process,can either alleviate or exacerbate ER stress-induced inflammation,depending on the specific context.The gut microbiome can influence both ER stress and autophagy pathways,further complicating the interplay between these processes.This review delves into the intricate relationship between ER stress,autophagy,and the gut microbiome in the context of intestinal inflammation.By exploring the molecular mechanisms underlying these interactions,we aim to provide a comprehensive theoretical framework for developing novel therapeutic strategies for IBD.A deeper understanding of the ER stress-autophagy axis,the gut microbial-ER stress axis,and the gut microbial-autophagy axis may pave the way for targeted interventions to restore intestinal health and mitigate the impact of IBD.展开更多
基金supported by European Union-NextGeneration EU under the Italian University and Research(MUR)National Innovation Ecosystem grant ECS00000041-VITALITY-CUP E13C22001060006(to MdA)。
文摘Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response plays a crucial role in worsening brain injury.Neuroinflammation,a key player in the pathophysiology of stroke,has a dual role.In the acute phase of stroke,neuroinflammation exacerbates brain injury,contributing to neuronal damage and blood–brain barrier disruption.This aspect of neuroinflammation is associated with poor neurological outcomes.Conversely,in the recovery phase following stroke,neuroinflammation facilitates brain repair processes,including neurogenesis,angiogenesis,and synaptic plasticity.The transition of neuroinflammation from a harmful to a reparative role is not well understood.Therefore,this review seeks to explore the mechanisms underlying this transition,with the goal of informing the development of therapeutic interventions that are both time-and context-specific.This review aims to elucidate the complex and dual role of neuroinflammation in stroke,highlighting the main actors,biomarkers of the disease,and potential therapeutic approaches.
基金supported by grants from the Deutsche Forschungsgemeinschaft(HU 2614/1-1(Project No.462650276))the Fritz Thyssen Foundation(10.21.1.021MN)the Medical faculty of the University of Saarland(HOMFOR2016,HOMFORexzellent2017,HOMFOR2024 Anschubfinanzierung)to WH。
文摘Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson's disease(PD).Prior studies identified cytokines(e.g.,tumor necrosis factor[TNF],interleukin[IL]-1,and IL-6)delivered by resident glial cells and brain-invading peripheral immune cells as the major contributor to neuroinflammation(Becher et al.,2017).In addition to pro-inflammatory cytokines,elevated levels of extracellular purine molecules such as adenosine triphosphate(ATP)and adenosine can be detected upon any pathological insults(e.g.,injury,ischemia,and hypoxia),contributing to the progression of neurological disorders(Borea et al.,2017).
基金supported by FWO(Fonds voor Wetenschappelijk Onderzoek),grant number G07562NFWO(to BB)。
文摘Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations.
基金supported by grants from NIH T32(DK007260,to WC)the Steno North American Fellowship awarded by the Novo Nordisk Foundation(NNF23OC0087108,to WC).
文摘The shared links between Alzheimer’s disease and type 2 diabetes mellitus:Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2DM)are two prevalent conditions that come with substantial daily struggles.Emerging evidence highlights that these diseases share similar pathophysiological features,including insulin resistance and chronic inflammation,which contribute to their rapid progression(Chen et al.,2022).Insulin resistance,a hallmark of T2DM,has been suggested to exacerbate neurodegeneration in AD.Similarly,chronic low-grade inflammation in T2DM parallels with neuroinflammation,which is observed in AD,suggesting overlapping pathophysiological mechanisms in T2DM and AD.
基金supported by the Health Commission of Hubei Province scientific research project(No.WJ2021M143)the Fundamental Research Funds for the Central Universities(No.413000714)+2 种基金the Research Fund of Anhui Institute of translational medicine(No.2023zhyx-C61)the Research Fund Project of Anhui Medical University(No.2022xkj148)Hubei Society of Pathology General Project(No.2025HBAP013).
文摘Epilepsy is a complex neurological disorder aggravated by chronic neuroinflammation largely driven by reactive astrocytes.These cells promote epileptogenesis through persistent cytokine secretion and glial scar formation.Current antiepileptic drugs remain ineffective in targeting these mechanisms due to limited blood-brain barrier(BBB)permeability and poor astrocytic specificity.A transferrin-functionalized biomimetic nanotherapeutic loaded with resveratrol(RN@RTA)was developed to regulate astrocyte-mediated inflammation by activating sirtuin 1(SIRT1)and suppressing the mitogen-activated protein kinase/nuclear factor Kappalight-chain-enhancer of activated B cells(MAPK/NF-κB)axis.Using in vitro BBB models,primary astrocytes,and a pilocarpine-induced chronic epilepsy mouse model,we evaluated the capacity of RN@RTA to cross the BBB,inhibit inflammatory signaling,and reduce seizure activity.Mechanistic assays included immunoprecipitation of NF-κB complexes,cytokine quantification,RNA sequencing,and histopathological assessments of glial and synaptic markers.RN@RTA achieved 82%uptake by hippocampal astrocytes and significantly reduced Il6,Tnf-α,and Nlrp3 expression.SIRT1 activation disrupted the NF-κB p65/p300 complex,leading to transcriptional repression of inflammatory genes and enhancement of autophagy.In vivo,seizure frequency decreased by 67%,synaptic structure was preserved,and astrogliosis was markedly alleviated.The findings demonstrate a dual regulatory mechanism in which RN@RTA suppresses neuroinflammatory signaling and restores neural homeostasis,offering a promising molecularly targeted approach for refractory epilepsy.
基金supported by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)[Finance Code 001](to MGS)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq)fellowship[research grants 309840/2022-8]。
文摘Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammatory drugs,which have a range of serious adverse effects.As an alternative,naturally derived molecules such as quercetin and its derivatives show promising anti-inflammatory properties and beneficial effects on various physiological functions.Our objective was to synthesize the evidence on the anti-inflammatory effect of quercetin and its derivatives in in vivo models,in the face of neuroinflammatory insults induced by lipopolysaccharide,through a systematic review and meta-analysis.A search of the preclinical literature was conducted across four databases(Pub Med,Web of Science,Scielo,and Google Scholar).Studies were selected based on inclusion and exclusion criteria,assessed for methodological quality using CAMARADES,and risk of bias using the SYRCLE tool,and data were extracted from the studies.The quantitative assessment of quercetin effects on the expression of pro-inflammatory cytokines and microgliosis was performed through a meta-analysis.A total of 384 potentially relevant articles were identified,of which 11 studies were included in the analysis.The methodological quality was assessed,resulting in an average score of 5.8/10,and the overall risk of bias analysis revealed a lack of methodological clarity in most studies.Furthermore,through the meta-analysis,it was observed that treatment with quercetin statistically reduces pro-inflammatory cytokines,such as tumor necrosis factor alpha,interleukin 6,interleukin 1β(n=89;SMD=–2.00;95%CI:–3.29 to–0.71),and microgliosis(n=33;SMD=–2.56;95%CI:–4.07 to–1.10).In terms of underlying mechanisms,quercetin and its derivatives exhibit antioxidant and anti-apoptotic properties,possibly through the nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 pathways,increasing the expression of antioxidant enzymes and reducing reactive species,and modulating the caspase pathway,increasing levels of anti-apoptotic proteins and decreasing proapoptotic proteins.Quercetin and its derivatives exhibit highly pleiotropic actions that simultaneously contribute to preventing neuroinflammation.However,despite promising results in animal models,future directions should focus on well-designed clinical studies to assess the safety,bioavailability,and efficacy of quercetin and its derivatives in humans.Additionally,standardization of methods and dosages in studies is crucial to ensure consistency of findings and optimize their application in clinical settings.
基金supported by the National Key Research and Development Program of China(No.2022YFC3702704)the National Natural Science Foundation of China(Nos.22376005,22076006 and 82073506).
文摘Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and systemic inflammation,as well as whether this association is modified by indoor particulate matter and the underlying mechanisms.In this prospective repeated-measure study among 66 participants,indoor airborne mi-crobiome was characterized using amplicon sequencing and qPCR.Indoor fine particulate matter(PM_(2.5))and inhalable particulate matter(PM10)were measured.Systemic inflammatory biomarkers were assessed,including white blood cell(WBC),neutrophil(NEUT),monocyte,eosinophil counts,and their proportions.Targeted serum amino acid metabolomics were conducted to explore the underlying mechanisms.Linear mixed-effect models re-vealed that bacterial and fungal Simpson diversity were significantly associated with decreased WBC and NEUT.For example,for each interquartile range increase in the bacterial Simpson diversity,WBC and NEUT changed by-4.53%(95%CI:-8.25%,-0.66%)and-5.95%(95%CI:-11.3%,-0.27%),respectively.Notably,increased inflammatory risks of airborne microbial exposure were observed when indoor PM_(2.5) and PM10 levels were below the WHO air quality guidelines.Mediation analyses indicated that dopamine metabolism partially mediated the anti-inflammatory effects of fungal diversity exposure.Overall,our study indicated protection from a diverse indoor microbial environment on cardiovascular health and proposed an underlying mechanism through amino acid metabolism.Additionally,health risks associated with microbial exposure deserve more attention in con-texts of low indoor particulate matter pollution.Further research is necessary to fully disentangle the complex relationships between indoor microbiome,air pollutants,and human health.
文摘Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012).
基金supported by the National Natural Science Foundation of China,Nos. 32260196 (to JY), 81860646 (to ZY) and 31860274 (to JY)a grant from Yunnan Department of Science and Technology,Nos. 202101AT070251 (to JY), 202201AS070084 (to ZY), 202301AY070001-239 (to JY), 202101AZ070001-012, and 2019FI016 (to ZY)。
文摘Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse model of Parkinson's disease and found that it effectively reduced dopamine neuron injury, neurotransmitter dopamine release, and motor symptoms. These neuroprotective effects of chitosan were related to bacterial metabolites, specifically shortchain fatty acids, and chitosan administration altered intestinal microbial diversity and decreased short-chain fatty acid production in the gut. Furthermore, chitosan effectively reduced damage to the intestinal barrier and the blood–brain barrier. Finally, we demonstrated that chitosan improved intestinal barrier function and alleviated inflammation in both the peripheral nervous system and the central nervous system by reducing acetate levels. Based on these findings, we suggest a molecular mechanism by which chitosan decreases inflammation through reducing acetate levels and repairing the intestinal and blood–brain barriers, thereby alleviating symptoms of Parkinson's disease.
基金funded by FEDER/Ministerio de Ciencia,Innovación y Universidades Agencia Estatal de Investigación/Project(PID2020-119729GB-100,REF/AEI/10.13039/501100011033)(to EP)a predoctoral fellowship from the Spanish Ministry of Universities(FPU)and Amigos de la Universidad de Navarra(to NSS)“Programa MRR Investigo 2023”(to MGB and MMD)。
文摘Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
文摘Atrial fibrillation(AF)is the most common arrhythmia in humans,affecting more than 40 million people worldwide.Radiofrequency catheter ablation(RFCA)was first introduced as a treatment for AF by Haïssaguerre M in the late 1990s.This procedure quickly became the treatment of choice,especially for symptomatic patients with AF refractory to medication.However,up to 45%of patients may experience AF recurrence within 12 months after RFCA.In this setting,AF recurrence is likely multifactorial,including atrial remodeling,local fibrosis or incomplete ablation due to failure in locating the trigger.Additionally,patients with obesity,sleep apnea,hypertension,or diabetes are at an increased risk of AF recurrence after RFCA.Inflammation is increasingly recognized as a potential key factor in AF recurrence and may arise both from the healing response of heart tissue post-ablation or from chronic low-grade inflammation,as observed in many risk factors.Here,we present an original study by Wang et al,which investigated the combination of the systemic immune-inflammation index-a marker developed to assess overall inflammatory status-and the APPLE score,designed to predict AF recurrence following RFCA.The study found that using both indicators together improved the accuracy of AF recurrence prediction.These findings underscore the significant role of inflammation in cardiovascular disease and demonstrated its impact on AF recurrence after RFCA.Further research is warranted to validate the combined use of these two scores in clinical settings for predicting AF recurrence following catheter ablation.
文摘Atrial fibrillation(Afib)is a common arrhythmia with significant public health implications,affecting millions of individuals worldwide.Catheter ablation(CA)is an established treatment for drug-resistant Afib,yet recurrence remains a major concern,impacting quality of life in a significant portion of patients.Inflammation plays a critical role in the recurrence of Afib after ablation,with systemic inflammatory markers such as C-reactive protein being linked to higher recurrence rates.In this editorial,we discuss the study by Wang et al,published in the latest issue,which investigates the predictive role of the systemic immune inflammation index(SII)in Afib recurrence following radiofrequency CA.Elevated pre-ablation SII levels are identified as an independent predictor of recurrence,significantly enhancing the predictive power of the APPLE score.Integration of SII improved the APPLE score’s predictive performance,as shown by enhanced area under the curve,net reclassification improvement,and integrated discrimination improvement.This combined model highlights the importance of both structural and inflammatory factors in Afib recurrence,offering a more personalized approach to patient management.Additionally,the affordability and accessibility of SII enhance its practicality in clinical workflows.The study by Wang et al underscores the potential of integrating SII with existing scoring systems to refine risk stratification and optimize treatment strategies.Future research should validate these findings across diverse populations,explore limitations such as the potential influence of comorbidities on SII reliability,and investigate additional biomarkers to enhance predictive accuracy.
基金Supported by National Natural Science Foundation of China,No.82300604Science and Technology Innovation Action Plan Star Project Application Guide/Star Project Incubation(Yangfan Special Program)of Shanghai,No.24YF2727600.
文摘BACKGROUND Inflammatory bowel diseases(IBD),including ulcerative colitis(UC)and Crohn’s disease(CD),are chronic gastrointestinal disorders with an increasing global prevalence and significant healthcare impact.The exact etiology of this condition remains unclear.Neutrophils play a critical role in IBD pathogenesis.Translocator protein(TSPO),a mitochondrial protein linked to immune responses,has demonstrated potential as an inflammatory marker.However,its role in IBD remains underexplored.AIM To investigate the role of TSPO in IBD pathogenesis,particularly in neutrophils.METHODS Bioinformatics analyses of Gene Expression Omnibus datasets(GE75214,GSE94648,GSE156776)assessed TSPO expression in IBD patients.TSPO expression was evaluated in human IBD samples,neutrophiles and a chronic colitis mouse model.Neutrophil function was examined in 18 samples using reactive oxygen species(ROS)production and neutrophil extracellular trap(NET)formation assays.Positron emission tomography-computed tomography(PET-CT)imaging and histology from 12 mice revealed TSPO expression in colitis.PET-CT and immunofluorescence staining assessed TSPO expression in brain under neuroinflammation condition.RESULTS Bioinformatics analysis revealed elevated TSPO expression in the intestinal mucosa and peripheral blood of patients with IBD,especially in neutrophils.This was confirmed by quantitative real-time polymerase chain reaction and immunohistochemical staining,which showed a significant upregulation of TSPO in active IBD.Neutrophils from patients with UC and CD exhibited higher TSPO expression,which correlated with increased ROS production and NET formation.In a mouse model of dextran sodium sulfate-induced chronic colitis,TSPO was upregulated in the colonic neutrophils and brain tissues,indicating its systemic involvement.PET-CT imaging showed enhanced TSPO uptake in the inflamed colon and brain regions,particularly in the microglia,highlighting neuroinflammation.CONCLUSION TSPO is significantly upregulated in neutrophils in IBD and contributes to intestinal inflammation.Its elevated expression in gut highlights its potential as a promising therapeutic target for IBD.
文摘BACKGROUND The hemoglobin-to-red cell distribution width ratio(HRR)is a recently intro-duced,easily accessible marker that provides insights into inflammation and the tumor vascular microenvironment.It has been suggested to have prognostic value for overall survival in various types of cancer,including urothelial carcinoma,lung cancer,and hepatocellular carcinoma.It has not yet been sufficiently invest-igated in colorectal cancers(CRC).AIM To investigate the prognostic significance of the HRR and other inflammation-based hematological markers in patients with metastatic CRC.Additionally,the study evaluated the impact of surgical interventions,particularly metastasectomy,and multiple clinical and laboratory parameters on overall survival.By iden-tifying low-cost,accessible prognostic indicators,this research seeks to support clinicians in optimizing treatment strategies and risk stratification for patients with CRC.METHODS In this retrospective study,patients diagnosed with CRC between January 2020 and December 2024 were analyzed.The impact of HRR in conjunction with inflammatory markers and a total of 22 different clinical and laboratory para-meters on overall survival were evaluated using univariate Cox regression and a multivariate model.Survival curves were visualized using Kaplan-Meier analysis.RESULTS A total of 155 patients with CRC were included in the study.The median age was 60 years,and 61.9%presented with de novo metastasis.In the receiver operating characteristic curve and area under the curve analysis performed to determine the optimal cutoff,the values were found to be 6.10 for carcinoembryonic antigen(CEA)(P=0.036),18.85 for platelet-to-red cell distribution width ratio(P=0.028),and 10.87 for platelet distribution width-to-lymphocyte ratio(P=0.028).For neutrophil-to-lymphocyte ratio,systemic immune-inflammation index(SII),platelet-to-lymphocyte ratio(PLR),monocyte-to-lymphocyte ratio,HRR,and carbohydrate antigen 19-9,an optimal cutoff could not be determined using the receiver operating characteristic-area under the curve analysis.Therefore,the median values were adopted as the cutoffs(3.09,835.96,177.50,0.380,0.824,and 21.6,respectively).Univariate analysis identified male gender(P=0.045),being under 65 years of age(P=0.001),history of metastas-ectomy(P=0.001),low serum CEA level(P=0.010),low PLR(P=0.024),low SII(P=0.010),and high HRR(P=0.025)as favorable prognostic factors for overall survival.In the multivariate model,being under 65 years of age[hazard ratio(HR)=1.59,95%confidence interval(CI):1.06-2.39,P=0.025],metastasectomy(HR=0.49,95%CI:0.29-0.85,P=0.011),CEA(HR=1.51,95%CI:1.0-2.28,P=0.048),and PLR(HR=1.63,95%CI:1.09-2.44,P=0.018)emerged as independent prognostic factors for overall survival,whereas gender,SII,and HRR did not retain statistical significance.CONCLUSION In conclusion,low HRR alone was a prognostic indicator.However,when modelled with other inflammatory and clinical parameters,it did not provide a sufficiently strong marker feature.
文摘Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates.There have been significant advances in sepsis management mainly focusing on early identification and therapy.However,complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e.,systemic inflammatory response syndrome criteria,sequential organ failure assessment(SOFA),or quick SOFA.These limitations have underscored the modest progress in reducing sepsis-related mortality.This review will focus on novel therapeutics such as oxidative stress targets,cytokine modulation,endothelial cell modulation,etc.,that are being conceptualized for the management of sepsis and septic shock.
文摘Rheumatoid arthritis(RA)is a chronic autoimmune disease that affects approxi-mately 0.46%of the global population.Conventional therapeutics for RA,including disease-modifying antirheumatic drugs(DMARDs),nonsteroidal anti-inflammatory drugs(NSAIDs),and corticosteroids,frequently result in unintended adverse effects.Dexamethasone(DEX)is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties.Liposomal delivery of DEX,particu-larly when liposomes are surface-modified with targeting ligands like peptides or sialic acid,can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity.This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA.Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models,reduces joint inflammation and damage,and alleviates cartilage destruction compared to free DEX.The liposomal formulation also shows better hemocompatibility,fewer adverse effects on body weight and immune organ index,and a longer circulation time with higher bioavailability.The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α(TNF-α)and B-cell-activating factor(BAFF),which are key players in the pathogenesis of RA.Additionally,liposomal DEX can induce the expres-sion of anti-inflammatory cytokines like interleukin-10(IL-10),which has significant anti-inflammatory and immunoregulatory properties.The findings suggest that lipo-somal DEX represents a promising candidate for effective and safe RA therapy,with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.
基金supported by the National Natural Science Foundation of China(Nos.82474412 and 82074364)the Innovation Program of Wuhan-Basic Research in 2022(No.2022020801020506)the Natural Science Foundation of Hubei Province(No.2022CFC024).
文摘Objective Safranal is a natural product from saffron(Crocus sativus L.)with anti-inflammatory and nephroprotective potential.This study aimed to explore the role of safranal in a cationic bovine serum albumin(C-BSA)-induced rat model of membranous glomerulonephritis(MGN).Methods After model establishment,Sprague–Dawley rats were administered 100 or 200 mg/kg safranal by gavage.A biochemical analyser was used to measure the urine protein levels and serum levels of renal function parameters.Hematoxylin–eosin and immunofluorescence staining of kidney tissues were performed to examine histopathological changes and assess the expression of IgG,C3,and Sirt1.Western blotting was performed to measure the protein levels of podocin,nephrin,Sirt1,and factors involved in the NF-κB/p65 pathway.Inflammatory cytokine levels in renal homogenates were determined by ELISA.Results Safranal at 100 or 200 mg/kg reduced kidney weight(2.07±0.15 g and 2.05±0.15 g)and the kidney somatic index(0.83±0.08%and 0.81±0.08%)in MGN rats compared with those in the model group without drug administration(2.62±0.17 g and 1.05±0.1%).C-BSA increased the urine protein level to 117.68±10.52 mg/day(compared with the sham group,5.03±0.45 mg/day),caused dysregulation of renal function indicators,and induced glomerular expansion and inflammatory cell infiltration in the rat kidney samples.All the biochemical and histological changes were improved by safranal administration.Safranal at two doses also increased the fluorescence intensities of IgG(0.1±0.009 and 0.088±0.008)and C3(0.065±0.006 and 0.048±0.004)compared with those in the MGN group(0.15±0.013 and 0.086±0.008).Additionally,safranal reversed the downregulation of podocin,nephrin,and Wilms tumor protein-1(WT1)levels and reversed the high inflammatory cytokine levels in MGN rats.Mechanistically,safranal activated Sirt1 signalling to interfere with NF-κB signalling in the kidney tissues of MGN rats.Conclusions Safranal ameliorates renal damage,inflammation,and podocyte injury in MGN by upregulating SIRT1 and inhibiting NF-κB signalling.
基金supported by the Atatürk University Scientific Research Projects Coordinator(Project No:2020/8737)。
文摘Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treated with 50 mg/kg and 100 mg/kg of naringin by gastric lavage for 10 days,as well as the group treated with 100 mg/kg of naringin alone.Liver and serum samples were collected for biochemical,histopathological,and molecular analyses,including liver enzyme activity,oxidative stress markers,inflammation,apoptosis-related proteins,and DNA damage indicators.Results:Naringin attenuated DOX-induced elevation in liver enzyme activity and inflammation markers while enhancing antioxidant activities.Naringin also activated the Nrf2-HO-1 signaling pathway,with the most pronounced effect in the high-dose naringin group.In addition,naringin modulated apoptotic signaling by downregulating the expression of PI3K-AKT and BAX,and upregulating Bcl-2,as well as reduced the level of 8-OHdG.Histopathological evaluation showed that DOX-induced structural liver alterations,such as cellular degeneration and necrosis,were notably attenuated by naringin treatment.Conclusions:Naringin treatment exerts protective effects against DOX-induced liver injury through its antioxidative,anti-inflammatory,and anti-apoptotic effects.
基金supported by CACMS Innovation Fund(No CI2021A04611,CI2021A05106)Scientific and technological innovation project of China Academy of Chinese Medical Sciences(CI2021B015)+1 种基金Scientific and technological innovation project of China Academy of Chinese Medical Sciences(CI2023E001TS01)Fundamental research funds for the central public welfare research institutes(L2022035).
文摘Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extract possesses anti-inflammatory and antiapoptotic properties and has a promising protective effect at all stages of the atherosclerotic disease process.In this study,we aimed to investigated whether SL improves UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.Methods We established a mouse model of MI+UPM.Echocardiographic measurement,measurement of myocardialinfarct size,biochemical analysis,enzyme-linked immunosorbent assay(ELISA),histopathological analysis,Transferase dUTP Nick End Labeling(TUNEL),Western blotting(WB),Polymerase Chain Reaction(PCR)and so on were used to explore the anti-inflammatory and antiapoptotic effects of SL in vivo and in vitro.Results SL treatment can attenuate UPM-induced cardiac dysfunction by improving left ventricular ejection fraction,fractional shortening,and decreasing cardiac infarction area.SL significantly reduced the levels of myocardial enzymes and attenuated UPM-induced morphological alterations.Moreover,SL significantly reduced expression levels of the inflammatory cytokines IL-6,TNF-α,and MCP-1.UPM further increased the infiltration of macrophages in myocardial tissue,whereas SL intervention reversed this phenomenon.UPM also triggered myocardial apoptosis,which was markedly attenuated by SL treatment.The results of in vitro experiments revealed that SL prevented cell damage caused by exposure to UPM combined with hypoxia by reducing the expression of the inflammatory factor NF-κB and inhibiting apoptosis in H9c2 cells.Conclusion Overall,both in vivo and in vitro experiments demonstrated that SL attenuated UPMaggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.The mechanisms were related to the downregulation of macrophages infiltrating heart tissues.
基金supported by the fund for the Project of the National Key Research and Development Program of China(2024YFD1300203)Project support was provided by the Fund opened from Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology,Longyan University(grant No.2021KF01)the Cyanine Project of Yangzhou University(2020)。
文摘The intestinal tract,a complex organ responsible for nutrient absorption and digestion,relies heavily on a balanced gut microbiome to maintain its integrity.Disruptions to this delicate microbial ecosystem can lead to intestinal inflammation,a hallmark of inflammatory bowel disease(IBD).While the role of the gut microbiome in IBD is increasingly recognized,the underlying mechanisms,particularly those involving endoplasmic reticulum(ER)stress,autophagy,and cell death,remain incompletely understood.ER stress,a cellular response to various stressors,can trigger inflammation and cell death.Autophagy,a cellular degradation process,can either alleviate or exacerbate ER stress-induced inflammation,depending on the specific context.The gut microbiome can influence both ER stress and autophagy pathways,further complicating the interplay between these processes.This review delves into the intricate relationship between ER stress,autophagy,and the gut microbiome in the context of intestinal inflammation.By exploring the molecular mechanisms underlying these interactions,we aim to provide a comprehensive theoretical framework for developing novel therapeutic strategies for IBD.A deeper understanding of the ER stress-autophagy axis,the gut microbial-ER stress axis,and the gut microbial-autophagy axis may pave the way for targeted interventions to restore intestinal health and mitigate the impact of IBD.