It is observed that the radiative recombination rate in InGaN-based light-emitting diode decreases with lattice temperature increasing.The effect of lattice temperature on the radiative recombination rate tends to be ...It is observed that the radiative recombination rate in InGaN-based light-emitting diode decreases with lattice temperature increasing.The effect of lattice temperature on the radiative recombination rate tends to be stable at high injection.Thus,there should be an upper limit for the radiative recombination rate in the quantum well with the carrier concentration increasing,even under the same lattice temperature.A modified and easily used ABC-model is proposed.It describes that the slope of the radiative recombination rate gradually decreases to zero,and further reaches a negative value in a small range of lattice temperature increasing.These provide a new insight into understanding the dependence of the radiative recombination rate on lattice temperature and carrier concentration in InGaN-based light-emitting diode.展开更多
The upper waveguide (UWG) has direct influences on the optical and electrical characteristics of the violet laser diode (LD) by changing the optical field distribution or barrier of the electron blocking layer (...The upper waveguide (UWG) has direct influences on the optical and electrical characteristics of the violet laser diode (LD) by changing the optical field distribution or barrier of the electron blocking layer (EBL). In this study, a series of InGaN-based violet LDs with different UWGs are investigated systematically with LASTIP software. It is found that the output light power (OLP) under an injecting current of 120 mA or the threshold current (Ith) is deteriorated when the UWG is u-In0.02Ga0.98N/GaN or u-In0.02Ga0.98N/AlxGa1-xN (0 ≤ x ≤ 0.1), which should be attributed to small optical confinement factor (OCF) or severe electron leakage. Therefore, a new violet LD structure with u-In0.02Ga0.98N/GaN/Al0.05Ga0.95N multiple layer UWG is proposed to reduce the optical loss and increase the barrier of EBL. Finally, the output light power under an injecting current of 120 mA is improved to 176.4 mW.展开更多
The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelen...The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved.展开更多
We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obt...We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is 1.0x10(-31) cm(6)s(-1) in the present sample, which contributes slightly to efficiency droop effect.展开更多
High-reflectivity Al-based n-electrode is used to enhance the luminescence properties of InGaN-based 395nm flip-chip near-ultraviolet (UV) light-emitting diodes. The Al-only metal layer could form the Ohmic contact ...High-reflectivity Al-based n-electrode is used to enhance the luminescence properties of InGaN-based 395nm flip-chip near-ultraviolet (UV) light-emitting diodes. The Al-only metal layer could form the Ohmic contact on the plasma etched n-GaN by means of chemical pre-treatment, with the lowest specific contact resistance of 2.211 × 10^-5 Ω. cm2. The AI n-electrodes enhance light output power of the 395 nm flip-chip near-UV light-emitting diodes by more than 33% compared with the Ti/AI n-electrodes. Meanwhile, the electrical characteristics of these chips with two types of n-electrodes do not show any significant discrepancy. The near-field light distribution measurement of packaged chips confirms that the enhanced luminescence is ascribed to the high refleetivity of the Al electrodes in the UV region. After the accelerated aging test for over 1000 h, the luminous degradation of the packaged chips with Al n-electrodes is less than 3%, which proves the reliability of these chips with the Al-based electrodes. Our approach shows a simplified design and fabrication of high-refleetivity n-electrode for flip-chip near-UV light emitting diodes.展开更多
InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. ...InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. It is observed that with the decrease of the growth temperature of the superlattice from 895℃ to 855℃, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K-150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.展开更多
Realization of efficient yellow-light-emitting diodes(LEDs) has always been a challenge in solid-state lighting.Great effort has been made, but only slight advancements have occurred in the past few decades. After com...Realization of efficient yellow-light-emitting diodes(LEDs) has always been a challenge in solid-state lighting.Great effort has been made, but only slight advancements have occurred in the past few decades. After comprehensive work on InGaN-based yellow LEDs on Si substrate, we successfully made a breakthrough and pushed the wall-plug efficiency of 565-nm-yellow LEDs to 24.3% at 20 A∕cm^2 and 33.7% at 3 A∕cm^2. The success of yellow LEDs can be credited to the improved material quality and reduced compressive strain of InGaN quantum wells by a prestrained layer and substrate, as well as enhanced hole injection by a 3 D pn junction with V-pits.展开更多
InGaN-based light-emitting diode(LED)as for the replacement of conventional fluorescent lighting source still needs a great effort to improve the light-extracting efficiency as well as internal quantum efficiency of L...InGaN-based light-emitting diode(LED)as for the replacement of conventional fluorescent lighting source still needs a great effort to improve the light-extracting efficiency as well as internal quantum efficiency of LEDs.Surface plasmon technology has recently attracted considerable interest,because the spontaneous emission rate and the light extraction efficiency of a light-emitting device can be simultaneously enhanced through the coupling between an InGaN quantum well and surface plasmons.The surface plasmon-emitter coupling technique would lead to high brightness multichip white LEDs that offer realistic alternatives to conventional fluorescent light sources.In this article,the possible enhancement mechanism of surface plasmon is discussed,and then recent developments of surface-plasmon-enhanced light-emitting diode are introduced.展开更多
Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices.In this paper, we first report the use of the nanoporous GaN (NP-GaN) DBR as a template for regrowth of InGaN-...Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices.In this paper, we first report the use of the nanoporous GaN (NP-GaN) DBR as a template for regrowth of InGaN-based light-emitting diodes (LEDs). The wafer-scale NP-GaN DBR, which is fabricated by electrochemical etching in a neutral solution, has a smooth surface, high reflectivity (>99.5%), and wide spectral stop band width (>70 nm). The chemical composition of the regrown LED thin film is similar to that of the reference LED, but the photoluminescence (PL) lifetime, PL intensity, and electroluminescence intensity of the LED with the DBR are enhanced several times compared to those of the reference LED. The intensity enhancement is attributed to the light reflection effect of the NP-GaN DBR and improved crystalline quality as a result of the etching scheme, whereas the enhancement of PL lifetime is attributable to the latter.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51602141,11674147,61604066,11604137,and 21405076)the National Key Research and Development Project of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)the Key Research and Development Project of Jiangxi Province,China(Grant No.20171BBE50052)。
文摘It is observed that the radiative recombination rate in InGaN-based light-emitting diode decreases with lattice temperature increasing.The effect of lattice temperature on the radiative recombination rate tends to be stable at high injection.Thus,there should be an upper limit for the radiative recombination rate in the quantum well with the carrier concentration increasing,even under the same lattice temperature.A modified and easily used ABC-model is proposed.It describes that the slope of the radiative recombination rate gradually decreases to zero,and further reaches a negative value in a small range of lattice temperature increasing.These provide a new insight into understanding the dependence of the radiative recombination rate on lattice temperature and carrier concentration in InGaN-based light-emitting diode.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0400803 and 2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金the Science Challenge Project,China(Grant No.TZ2016003)the Beijing Municipal Science and Technology Project,China(Grant No.Z161100002116037)
文摘The upper waveguide (UWG) has direct influences on the optical and electrical characteristics of the violet laser diode (LD) by changing the optical field distribution or barrier of the electron blocking layer (EBL). In this study, a series of InGaN-based violet LDs with different UWGs are investigated systematically with LASTIP software. It is found that the output light power (OLP) under an injecting current of 120 mA or the threshold current (Ith) is deteriorated when the UWG is u-In0.02Ga0.98N/GaN or u-In0.02Ga0.98N/AlxGa1-xN (0 ≤ x ≤ 0.1), which should be attributed to small optical confinement factor (OCF) or severe electron leakage. Therefore, a new violet LD structure with u-In0.02Ga0.98N/GaN/Al0.05Ga0.95N multiple layer UWG is proposed to reduce the optical loss and increase the barrier of EBL. Finally, the output light power under an injecting current of 120 mA is improved to 176.4 mW.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61505197 and 61334009the National High-Technology Research and Development Program of China under Grant No 2014AA032604
文摘The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400102the National Basic Research Program of China under Grant Nos 2012CB3155605,2013CB632804,2014CB340002 and 2015CB351900+6 种基金the National Natural Science Foundation of China under Grant Nos 61574082,61210014,61321004,61307024,and 51561165012the High-Technology Research and Development Program of China under Grant No 2015AA017101the Tsinghua University Initiative Scientific Research Program under Grant Nos 2013023Z09N and 2015THZ02-3the Open Fund of the State Key Laboratory on Integrated Optoelectronics under Grant No IOSKL2015KF10the CAEP Microsystem and THz Science and Technology Foundation under Grant No CAEPMT201505the Science Challenge Project under Grant No JCKY2016212A503the Guangdong Province Science and Technology Program under Grant No 2014B010121004
文摘We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is 1.0x10(-31) cm(6)s(-1) in the present sample, which contributes slightly to efficiency droop effect.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400901 and2016YFB0400804the Key Laboratory of Infrared Imaging Materials and Detectors of Shanghai Institute of Technical Physics of Chinese Academy of Sciences under Grant NoⅡMDKFJJ-15-07+1 种基金the National Natural Science Foundation of China under Grant Nos 61675079,11574166 and 61377034the China Postdoctoral Foundation under Grant No 2016M602287
文摘High-reflectivity Al-based n-electrode is used to enhance the luminescence properties of InGaN-based 395nm flip-chip near-ultraviolet (UV) light-emitting diodes. The Al-only metal layer could form the Ohmic contact on the plasma etched n-GaN by means of chemical pre-treatment, with the lowest specific contact resistance of 2.211 × 10^-5 Ω. cm2. The AI n-electrodes enhance light output power of the 395 nm flip-chip near-UV light-emitting diodes by more than 33% compared with the Ti/AI n-electrodes. Meanwhile, the electrical characteristics of these chips with two types of n-electrodes do not show any significant discrepancy. The near-field light distribution measurement of packaged chips confirms that the enhanced luminescence is ascribed to the high refleetivity of the Al electrodes in the UV region. After the accelerated aging test for over 1000 h, the luminous degradation of the packaged chips with Al n-electrodes is less than 3%, which proves the reliability of these chips with the Al-based electrodes. Our approach shows a simplified design and fabrication of high-refleetivity n-electrode for flip-chip near-UV light emitting diodes.
基金Supported by the National Natural Science Foundation of China under Grant No 61334001the National Key Research and Development Program of China under Grant Nos 2016YFB0400600,2016YFB0400601 and 2016YFB0400100+1 种基金the National Science Foundation for Young Scientists of China under Grant No 21405076the Fund for Less Developed Regions of the National Natural Science Foundation of China under Grant No 11364034
文摘InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. It is observed that with the decrease of the growth temperature of the superlattice from 895℃ to 855℃, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K-150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.
基金National Key R&D Program of China(2016YFB0400600,2016YFB0400601,2017YFB0403105)State Key Program of the National Science Foundation of China(61334001)+1 种基金National Natural Science Foundation of China(NSFC)(11364034,11604137,11674147,21405076,51602141,61604066)National High Technology Research and Development Program of China(2011AA03A101,2012AA041002)
文摘Realization of efficient yellow-light-emitting diodes(LEDs) has always been a challenge in solid-state lighting.Great effort has been made, but only slight advancements have occurred in the past few decades. After comprehensive work on InGaN-based yellow LEDs on Si substrate, we successfully made a breakthrough and pushed the wall-plug efficiency of 565-nm-yellow LEDs to 24.3% at 20 A∕cm^2 and 33.7% at 3 A∕cm^2. The success of yellow LEDs can be credited to the improved material quality and reduced compressive strain of InGaN quantum wells by a prestrained layer and substrate, as well as enhanced hole injection by a 3 D pn junction with V-pits.
基金Key Fund Projects of Shanxi Province for Returned Overseas Students(2009-03)
文摘InGaN-based light-emitting diode(LED)as for the replacement of conventional fluorescent lighting source still needs a great effort to improve the light-extracting efficiency as well as internal quantum efficiency of LEDs.Surface plasmon technology has recently attracted considerable interest,because the spontaneous emission rate and the light extraction efficiency of a light-emitting device can be simultaneously enhanced through the coupling between an InGaN quantum well and surface plasmons.The surface plasmon-emitter coupling technique would lead to high brightness multichip white LEDs that offer realistic alternatives to conventional fluorescent light sources.In this article,the possible enhancement mechanism of surface plasmon is discussed,and then recent developments of surface-plasmon-enhanced light-emitting diode are introduced.
基金National Natural Science Foundation of China (NSFC) (61376069,11775134)Key Research and Development Plan of Shandong Province,China (2018GGX102024,2018GGX102014)
文摘Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices.In this paper, we first report the use of the nanoporous GaN (NP-GaN) DBR as a template for regrowth of InGaN-based light-emitting diodes (LEDs). The wafer-scale NP-GaN DBR, which is fabricated by electrochemical etching in a neutral solution, has a smooth surface, high reflectivity (>99.5%), and wide spectral stop band width (>70 nm). The chemical composition of the regrown LED thin film is similar to that of the reference LED, but the photoluminescence (PL) lifetime, PL intensity, and electroluminescence intensity of the LED with the DBR are enhanced several times compared to those of the reference LED. The intensity enhancement is attributed to the light reflection effect of the NP-GaN DBR and improved crystalline quality as a result of the etching scheme, whereas the enhancement of PL lifetime is attributable to the latter.