In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by ener...In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is established by employing Crank-Nicolson technique in time and Galerkin finite element method in space. The stability and convergence are proved and the stiffness matrix is given analytically. Three numerical examples are given to confirm our theoretical analysis in which we find that even with the same initial condition, the classical and fractional diffusion equations perform differently but tend to be uniform diffusion at last.展开更多
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element method...Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method.展开更多
Most of the chemical plants that were put into production in earlier years did not install time synchronization servers or use signal transmission between systems for time synchronization, resulting in inconsistent ti...Most of the chemical plants that were put into production in earlier years did not install time synchronization servers or use signal transmission between systems for time synchronization, resulting in inconsistent time of various types of control systems in the chemical plants, and the time of controllers and operating stations of the systems themselves are not synchronized. This paper expounds the time status of various systems in chemical plants at the present stage, the importance of realizing plant-wide time synchronization and the realization method of time synchronization project.展开更多
This research is based on the implementation of interactive and exploratory teaching methods in college English courses.The analysis done for this research signifies the importance of interactive-exploratory teaching ...This research is based on the implementation of interactive and exploratory teaching methods in college English courses.The analysis done for this research signifies the importance of interactive-exploratory teaching methods,identifying the characteristics of interactive teaching methods,and specifying the purpose of conducting interactive-exploratory teaching methods as a reference for educators.展开更多
Non-linear numerical modeling, widely used in research and development to understand many complex processes such as forming or machining, does not guarantee the success of a study to be performed. Indeed, the numerica...Non-linear numerical modeling, widely used in research and development to understand many complex processes such as forming or machining, does not guarantee the success of a study to be performed. Indeed, the numerical simulation uses finite element codes where the models already integrated are not based on shapes adjustable to any type of study. In this study, a new form of non-linear constitutive flow law based on the Modified Zerilli-Armstrong model, which can answer the above problem, has been developed to apply it to the numerical simulation of two different tests (a quasi-static compression test, the necking of a circular bar). This flow law is based on the modified Zerilli-Armstrong model, which, together with the new modified Johnson-Cook model, has been compared to appreciate the relevance of the proposal. For that, an implementation of this new law via the VUHARD subroutine into the Abaqus/Explicit finite element code was made to model the two tests. The comparison of the results obtained (from identification) by our proposed law with those obtained using the NMJC shows that this new law better approaches the experiments than the other one. This is also shown through the numerical results using the Abaqus software. It can be said that this way of formulating a flow law allows highlighting the great performance of the proposed approach. Although this law has been only used for quasi-static tests, we can say that it can also be used in dynamic tests.展开更多
In this paper we develop several new refinement relations of Z for multiple viewpoints oriented requirements method (MVORM). The original motivation is that we found the standard Z refinement relation is not adequate ...In this paper we develop several new refinement relations of Z for multiple viewpoints oriented requirements method (MVORM). The original motivation is that we found the standard Z refinement relation is not adequate or correct when considering specifications that have temporal relationships of operations. The concept of temporal state variables is introduced into Z. Then new implementation relations are defined and new refinement relations are deduced, mainly for temporal state variables to process temporal relationships of operations. We use state transition systems to abstract the temporal state transitions. A simple example is used to show the procedures of MVORM. Finally some directions of further work are forwarded.展开更多
文摘In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is established by employing Crank-Nicolson technique in time and Galerkin finite element method in space. The stability and convergence are proved and the stiffness matrix is given analytically. Three numerical examples are given to confirm our theoretical analysis in which we find that even with the same initial condition, the classical and fractional diffusion equations perform differently but tend to be uniform diffusion at last.
基金supported by the National Natural Science Foundation of China (No. 41130418)the Strategic Leading Science and Technology Programme (Class B) of the Chinese Academy of Sciences (No. XDB10010400)
文摘Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method.
文摘Most of the chemical plants that were put into production in earlier years did not install time synchronization servers or use signal transmission between systems for time synchronization, resulting in inconsistent time of various types of control systems in the chemical plants, and the time of controllers and operating stations of the systems themselves are not synchronized. This paper expounds the time status of various systems in chemical plants at the present stage, the importance of realizing plant-wide time synchronization and the realization method of time synchronization project.
基金Heilongjiang Province Economic and Social Development Key Research Project:Research on the Theory and Practice of Foreign Language Education in Heilongjiang Colleges and Universities from a Cross-cultural Perspective(WY2019037-B)The 2019 Harbin Engineering University undergraduate teaching reform research project research-based teaching and process assessment special project“Analysis and Research on Learning Motivation and Strategies of Ethnic Minority Undergraduates in Local Universities under the Background of Double First-class”(JG2019B87).
文摘This research is based on the implementation of interactive and exploratory teaching methods in college English courses.The analysis done for this research signifies the importance of interactive-exploratory teaching methods,identifying the characteristics of interactive teaching methods,and specifying the purpose of conducting interactive-exploratory teaching methods as a reference for educators.
文摘Non-linear numerical modeling, widely used in research and development to understand many complex processes such as forming or machining, does not guarantee the success of a study to be performed. Indeed, the numerical simulation uses finite element codes where the models already integrated are not based on shapes adjustable to any type of study. In this study, a new form of non-linear constitutive flow law based on the Modified Zerilli-Armstrong model, which can answer the above problem, has been developed to apply it to the numerical simulation of two different tests (a quasi-static compression test, the necking of a circular bar). This flow law is based on the modified Zerilli-Armstrong model, which, together with the new modified Johnson-Cook model, has been compared to appreciate the relevance of the proposal. For that, an implementation of this new law via the VUHARD subroutine into the Abaqus/Explicit finite element code was made to model the two tests. The comparison of the results obtained (from identification) by our proposed law with those obtained using the NMJC shows that this new law better approaches the experiments than the other one. This is also shown through the numerical results using the Abaqus software. It can be said that this way of formulating a flow law allows highlighting the great performance of the proposed approach. Although this law has been only used for quasi-static tests, we can say that it can also be used in dynamic tests.
基金Supported by Natural Science Foundation of Hubei Province (98J0 75 ) Ziqiang Technical Innovation Foundation ofWuhan Universi
文摘In this paper we develop several new refinement relations of Z for multiple viewpoints oriented requirements method (MVORM). The original motivation is that we found the standard Z refinement relation is not adequate or correct when considering specifications that have temporal relationships of operations. The concept of temporal state variables is introduced into Z. Then new implementation relations are defined and new refinement relations are deduced, mainly for temporal state variables to process temporal relationships of operations. We use state transition systems to abstract the temporal state transitions. A simple example is used to show the procedures of MVORM. Finally some directions of further work are forwarded.