As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the...As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.展开更多
Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reco...Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reconstruction.The main objectives were:(1)calculating the quantum efficiency curves of specific cameras,(2)studying the relationships between the spatial resolution and the pinhole diameter,magnification,and camera binning value,and(3)comparing image-processing methods for pinhole camera systems.Several results were obtained using a point and plane source as the X-ray fluorescence emitter and an array of 100×100 silicon pixel detectors as the X-ray camera.The quantum efficiency of a back-illuminated deep depletion(BI-DD)structure was above 30%for the XRF energies in the 0.8–9 keV range,with the maximum of 93.7%at 4 keV.The best spatial resolution of the pinhole camera was 24.7μm and 31.3 lp/mm when measured using the profile function of the point source,with the diameter of 20μm,magnification of 3.16,and camera bin of 1.A blind deconvolution algorithm with Gaussian filtering performed better than the Wiener filter and Richardson iterative methods on FF-XRF images,with the signal-to-noise ratio of 7.81 dB and improved signalto-noise ratio of 7.24 dB at the diameter of 120μm,magnification of 1.0,and camera bin of 1.展开更多
Diffraction enhanced imaging (DEI) has been widely applied in many fields, especially when imaging low-Z samples or when the difference in the attenuation coefficient between different regions in the sample is too s...Diffraction enhanced imaging (DEI) has been widely applied in many fields, especially when imaging low-Z samples or when the difference in the attenuation coefficient between different regions in the sample is too small to be detected. Recent developments of this technique have presented a need for a new software package for data analysis. Here, the Diffraction Enhanced Image Reconstructor (DEIReconstructor), developed in Matlab, is presented. DEIReconstructor has a user-friendly graphical user interface and runs under any of the 32~bit or 64- bit Microsoft Windows operating systems including XP and WinT. Many of its features are integrated to support imaging preprocessing, extract absorption, refractive and scattering information of diffraction enhanced imaging and allow for parallel-beam tomography reconstruction for DEI-CT. Furthermore, many other useful functions are also implemented in order to simplify the data analysis and the presentation of results. The compiled software package is freely available.展开更多
Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determin...Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determination method to measure the LSPR absorption intensity of gold nanorods (GNRs). A near-infrared (NIR) imaging system is established, and an NIR absorption image of the multiple samples of the colloidal GNRs is captured. Then, the LSPR absorption intensities of these samples are obtained by calculating the average grayscale of the target areas based on the NIR image processing technology. By using this method, the LSPR absorption intensities of the multiple samples are determined all at once, and their accuracy is as high as that obtained by using spectrophotometry. These results suggest that this method is an efficient multi-channel determination technique with high-throughput sensing applications.展开更多
Rockfalls are among the frequent hazards in underground mines worldwide,requiring effective methods for detecting unstable rock blocks to ensure miners’and equipment’s safety.This study proposes a novel approach for...Rockfalls are among the frequent hazards in underground mines worldwide,requiring effective methods for detecting unstable rock blocks to ensure miners’and equipment’s safety.This study proposes a novel approach for identifying potential rockfall zones using infrared thermal imaging and image segmentation techniques.Infrared images of rock blocks were captured at the Draa Sfar deep underground mine in Morocco using the FLUKE TI401 PRO thermal camera.Two segmentation methods were applied to locate the potential unstable areas:the classical thresholding and the K-means clustering model.The results show that while thresholding allows a binary distinction between stable and unstable areas,K-means clustering is more accurate,especially when using multiple clusters to show different risk levels.The close match between the clustering masks of unstable blocks and their corresponding visible light images further validated this.The findings confirm that thermal image segmentation can serve as an alternative method for predicting rockfalls and monitoring geotechnical issues in underground mines.Underground operators worldwide can apply this approach to monitor rock mass stability.However,further research is recommended to enhance these results,particularly through deep learning-based segmentation and object detection models.展开更多
Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced ima...Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.展开更多
In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide...In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide an intuitive and efficient representation of tool wear conditions.However,micro milling tools have non-flat flanks,thin coatings can peel off,and spindle orientation is uncertain during downtime.These factors result in low pixel values,uneven illumination,and arbitrary tool position.To address this,we propose an image-based tool wear monitoring method.It combines multiple algorithms to restore lost pixels due to uneven illumination during segmentation and accurately extract wear areas.Experimental results demonstrate that the proposed algorithm exhibits high robustness to such images,effectively addressing the effects of illumination and spindle orientation.Additionally,the algorithm has low complexity,fast execution time,and significantly reduces the detection time in situ.展开更多
The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a pytho...The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community.展开更多
This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert ...This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.展开更多
Radio interferometric imaging samples visibility data in the spatial frequency domain and then reconstructs the image.Because of the limited number of antennas,the sampling is usually sparse and noisy.Compressed sensi...Radio interferometric imaging samples visibility data in the spatial frequency domain and then reconstructs the image.Because of the limited number of antennas,the sampling is usually sparse and noisy.Compressed sensingbased on convex optimization is an effective reconstruction method for sparse sampling conditions.The hyperparameter for the l_(1)regularization term is an important parameter that directly affects the quality of the reconstructed image.If its value is too high,the image structure will be missed.If its value is too low,the image will have a low signal-to-noise ratio.The selection of hyperparameters under different levels of image noise is studied in this paper,and solar radio images are used as examples to analyze the optimization results of compressed sensing algorithms under different noise conditions.The simulation results show that when the salt-and-pepper noise density is between 10%and 30%,the compressed sensing algorithm obtains good reconstruction results.Moreover,the optimal hyperparameter value has a linear relationship with the noise density,and the mean squared error of regression is approximately 8.10×10^(-8).展开更多
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit...In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.展开更多
To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette...To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette scanning sub images more effectively. It can restore the original area and shape of an object effectively, and keep the energy information of the object. To process sub images got by a rosette scanning system, morphological filter is more effective than traditional low pass filter.展开更多
Visually-induced erotic arousal evoked by pornographic visual stimuli, such as films or photographs, is a common occurrence in human behavior. The brain activation associated with visual erotic stimuli in heterosexua...Visually-induced erotic arousal evoked by pornographic visual stimuli, such as films or photographs, is a common occurrence in human behavior. The brain activation associated with visual erotic stimuli in heterosexual right handed females is studied. Functional magnetic resonance imaging is used to investigate 15 female partici- panterotic arousal induced by visual stimuli in film and picture forms, respectively, performing three or more times during their menstrual cycle on a 3.0T magnetic resonance imaging scanner. There is activation of a set of bilateral brain areas, including the inferior lateral occipital cortex, the anterior supramarginal gyrus, the parietal operculum cortex, the superior parietal lobules, the right inferior frontal gyrus, the cerebellum, the hypothalamus, the thalamus, the hippocampus, and the mid-brain. From different regions, the brain activation is observed and the inferior frontal gyrus has found to be task-independent. Furthermore, the right inferior frontal gyrus has more activation than the left inferior frontal gyrus. The result shows that the right inferior frontal gyrus plays an important role in pornographic information processing rather than being activated stimuli property specific. It is presented for the first time that the functional laterization of the inferior frontal gyrus is bi-directional rather than single (left) directional.展开更多
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS3...To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
Material degradation is accompanied by the changes in surface structure,morphology,and composition.These changes can be recorded by a variety of image acquisition devices that export digital images in grayscale or tru...Material degradation is accompanied by the changes in surface structure,morphology,and composition.These changes can be recorded by a variety of image acquisition devices that export digital images in grayscale or true color to a detector.Information regarding corrosion type and extent can be extracted with image processing methods.This paper provides a comprehensive review of material degradation assessed by digital image processing.Digital image processing systems used to assess material degradation are briefly reviewed,and the algorithms developed to process metallic materials degradation images are described.Physical and electrochemical methods that can be used to support digital image processing results are summarized,and future work that will augment the present methods of evaluating material degradation are discussed.展开更多
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati...In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.展开更多
The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the...The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.展开更多
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+3 种基金the National Science Foundation of China 12422303,12403024,12222301,12173007,and 12261141690the Postdoctoral Fellowship Program of CPSF under grant Number GZB20240731the Young Data Scientist Project of the National Astronomical Data Center,and the China Post-doctoral Science Foundation No.2023M743447support from the NSFC through grant No.12303039 and No.12261141690.
文摘As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.
基金supported by the Sichuan Science and Technology Program,China(No.2020ZDZX0004)。
文摘Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reconstruction.The main objectives were:(1)calculating the quantum efficiency curves of specific cameras,(2)studying the relationships between the spatial resolution and the pinhole diameter,magnification,and camera binning value,and(3)comparing image-processing methods for pinhole camera systems.Several results were obtained using a point and plane source as the X-ray fluorescence emitter and an array of 100×100 silicon pixel detectors as the X-ray camera.The quantum efficiency of a back-illuminated deep depletion(BI-DD)structure was above 30%for the XRF energies in the 0.8–9 keV range,with the maximum of 93.7%at 4 keV.The best spatial resolution of the pinhole camera was 24.7μm and 31.3 lp/mm when measured using the profile function of the point source,with the diameter of 20μm,magnification of 3.16,and camera bin of 1.A blind deconvolution algorithm with Gaussian filtering performed better than the Wiener filter and Richardson iterative methods on FF-XRF images,with the signal-to-noise ratio of 7.81 dB and improved signalto-noise ratio of 7.24 dB at the diameter of 120μm,magnification of 1.0,and camera bin of 1.
基金Supported by National Basic Research Program of China(2012CB825800)National Natural Science Foundation of China(11205189,11375225,81271574,U1332109)Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-YW-N42)
文摘Diffraction enhanced imaging (DEI) has been widely applied in many fields, especially when imaging low-Z samples or when the difference in the attenuation coefficient between different regions in the sample is too small to be detected. Recent developments of this technique have presented a need for a new software package for data analysis. Here, the Diffraction Enhanced Image Reconstructor (DEIReconstructor), developed in Matlab, is presented. DEIReconstructor has a user-friendly graphical user interface and runs under any of the 32~bit or 64- bit Microsoft Windows operating systems including XP and WinT. Many of its features are integrated to support imaging preprocessing, extract absorption, refractive and scattering information of diffraction enhanced imaging and allow for parallel-beam tomography reconstruction for DEI-CT. Furthermore, many other useful functions are also implemented in order to simplify the data analysis and the presentation of results. The compiled software package is freely available.
基金Supported by the Natural Science Foundation of Jiangsu Province(SBK201240182)
文摘Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determination method to measure the LSPR absorption intensity of gold nanorods (GNRs). A near-infrared (NIR) imaging system is established, and an NIR absorption image of the multiple samples of the colloidal GNRs is captured. Then, the LSPR absorption intensities of these samples are obtained by calculating the average grayscale of the target areas based on the NIR image processing technology. By using this method, the LSPR absorption intensities of the multiple samples are determined all at once, and their accuracy is as high as that obtained by using spectrophotometry. These results suggest that this method is an efficient multi-channel determination technique with high-throughput sensing applications.
基金supported by the Moroccan Ministry of Higher Education,Scientific Research,and Innovationthe Moroccan Digital Development Agency(DDA)+2 种基金the National Center for Scientific and Technical Research of Morocco(CNRST)through the Al-Khawarizmi projectthe MANAGEM groupMASCIR supporting this project.
文摘Rockfalls are among the frequent hazards in underground mines worldwide,requiring effective methods for detecting unstable rock blocks to ensure miners’and equipment’s safety.This study proposes a novel approach for identifying potential rockfall zones using infrared thermal imaging and image segmentation techniques.Infrared images of rock blocks were captured at the Draa Sfar deep underground mine in Morocco using the FLUKE TI401 PRO thermal camera.Two segmentation methods were applied to locate the potential unstable areas:the classical thresholding and the K-means clustering model.The results show that while thresholding allows a binary distinction between stable and unstable areas,K-means clustering is more accurate,especially when using multiple clusters to show different risk levels.The close match between the clustering masks of unstable blocks and their corresponding visible light images further validated this.The findings confirm that thermal image segmentation can serve as an alternative method for predicting rockfalls and monitoring geotechnical issues in underground mines.Underground operators worldwide can apply this approach to monitor rock mass stability.However,further research is recommended to enhance these results,particularly through deep learning-based segmentation and object detection models.
基金funded by Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/MRC/13/771-4.
文摘Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.
基金Supported by National Natural Science Foundation of China(Grant No.52175528)。
文摘In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide an intuitive and efficient representation of tool wear conditions.However,micro milling tools have non-flat flanks,thin coatings can peel off,and spindle orientation is uncertain during downtime.These factors result in low pixel values,uneven illumination,and arbitrary tool position.To address this,we propose an image-based tool wear monitoring method.It combines multiple algorithms to restore lost pixels due to uneven illumination during segmentation and accurately extract wear areas.Experimental results demonstrate that the proposed algorithm exhibits high robustness to such images,effectively addressing the effects of illumination and spindle orientation.Additionally,the algorithm has low complexity,fast execution time,and significantly reduces the detection time in situ.
基金supported by the National Natural Science Foundation of China(NSFC,12173012 and 12473050)the Guangdong Natural Science Funds for Distinguished Young Scholars(2023B1515020049)+2 种基金the Shenzhen Science and Technology Project(JCYJ20240813104805008)the Shenzhen Key Laboratory Launching Project(No.ZDSYS20210702140800001)the Specialized Research Fund for State Key Laboratory of Solar Activity and Space Weather。
文摘The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community.
基金supported from the Strategic Pioneer Program of the Astronomy Large-Scale Scientific FacilityChinese Academy of Sciences and the Science and Education Integration Funding of University of Chinese Academy of Sciences+9 种基金the supports from the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the supports from the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB0550000the National Natural Science Foundation of China(NSFC,grant Nos.12422303 and12261141690)the supports from the NSFC(grant No.12403024)supports from the NSFC through grant Nos.11988101 and 11933004the Postdoctoral Fellowship Program of CPSF under grant No.GZB20240731the Young Data Scientist Project of the National Astronomical Data Centerthe China Post-doctoral Science Foundation(No.2023M743447)supports from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.
文摘Radio interferometric imaging samples visibility data in the spatial frequency domain and then reconstructs the image.Because of the limited number of antennas,the sampling is usually sparse and noisy.Compressed sensingbased on convex optimization is an effective reconstruction method for sparse sampling conditions.The hyperparameter for the l_(1)regularization term is an important parameter that directly affects the quality of the reconstructed image.If its value is too high,the image structure will be missed.If its value is too low,the image will have a low signal-to-noise ratio.The selection of hyperparameters under different levels of image noise is studied in this paper,and solar radio images are used as examples to analyze the optimization results of compressed sensing algorithms under different noise conditions.The simulation results show that when the salt-and-pepper noise density is between 10%and 30%,the compressed sensing algorithm obtains good reconstruction results.Moreover,the optimal hyperparameter value has a linear relationship with the noise density,and the mean squared error of regression is approximately 8.10×10^(-8).
基金Project (10776020) supported by the Joint Foundation of the National Natural Science Foundation of China and China Academy of Engineering Physics
文摘In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.
文摘To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette scanning sub images more effectively. It can restore the original area and shape of an object effectively, and keep the energy information of the object. To process sub images got by a rosette scanning system, morphological filter is more effective than traditional low pass filter.
基金Supported by the Beijing Natural Science Foundation (7102102)the Scientific Research Key Pro-gram of Beijing Municipal Commission of Education(KZ200810025011)the Research Project of Dongguan Higher Ed-ucation(200910815252)~~
文摘Visually-induced erotic arousal evoked by pornographic visual stimuli, such as films or photographs, is a common occurrence in human behavior. The brain activation associated with visual erotic stimuli in heterosexual right handed females is studied. Functional magnetic resonance imaging is used to investigate 15 female partici- panterotic arousal induced by visual stimuli in film and picture forms, respectively, performing three or more times during their menstrual cycle on a 3.0T magnetic resonance imaging scanner. There is activation of a set of bilateral brain areas, including the inferior lateral occipital cortex, the anterior supramarginal gyrus, the parietal operculum cortex, the superior parietal lobules, the right inferior frontal gyrus, the cerebellum, the hypothalamus, the thalamus, the hippocampus, and the mid-brain. From different regions, the brain activation is observed and the inferior frontal gyrus has found to be task-independent. Furthermore, the right inferior frontal gyrus has more activation than the left inferior frontal gyrus. The result shows that the right inferior frontal gyrus plays an important role in pornographic information processing rather than being activated stimuli property specific. It is presented for the first time that the functional laterization of the inferior frontal gyrus is bi-directional rather than single (left) directional.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.
文摘To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
基金financially supported by the National Natural Science Foundation of China(No.51701140)。
文摘Material degradation is accompanied by the changes in surface structure,morphology,and composition.These changes can be recorded by a variety of image acquisition devices that export digital images in grayscale or true color to a detector.Information regarding corrosion type and extent can be extracted with image processing methods.This paper provides a comprehensive review of material degradation assessed by digital image processing.Digital image processing systems used to assess material degradation are briefly reviewed,and the algorithms developed to process metallic materials degradation images are described.Physical and electrochemical methods that can be used to support digital image processing results are summarized,and future work that will augment the present methods of evaluating material degradation are discussed.
基金This paper is supported by the National Natural Science Foundation ofChina (No .40371107) .
文摘In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.
文摘The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.