Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes ...Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n...Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.展开更多
The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system.The self-connection synapse,as a critical form of feedback synapse in Hopfield ne...The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system.The self-connection synapse,as a critical form of feedback synapse in Hopfield neurons,plays an essential role in understanding the dynamic behavior of the brain.Synaptic memristors can bring neural network models closer to the complexity of the brain's neural networks.Inspired by this,this study incorporates the nonlinear memory characteristics of synapses into the Hopfield neural network(HNN)by replacing a single self-synapse in a four-dimensional HNN model with a novel cosine memristor model,aiming to more realistically reproduce the dynamical behavior of biological neurons in artificial systems.By performing a dynamical analysis of the system using numerical methods,we find that the model exhibits infinitely many equilibrium points and can induce the formation of rare transient attractors,as well as an arbitrary number of multi-scroll attractors.Additionally,the model demonstrates complex coexisting attractor dynamics,including transient chaos,periodicity,decaying periodicity,and coexisting chaos.Furthermore,the feasibility of the proposed HNN model is verified using a field-programmable gate array(FPGA).Finally,an electronic codebook(ECB)–mode block cipher encryption algorithm is proposed for image encryption.The encryption performance is evaluated,with an information entropy value of 7.9993,demonstrating the excellent randomness of the system-generated numbers.展开更多
In wireless communication transmission,image encryption plays a key role in protecting data privacy against unauthorized access.However,conventional encryption methods often face challenges in key space security,parti...In wireless communication transmission,image encryption plays a key role in protecting data privacy against unauthorized access.However,conventional encryption methods often face challenges in key space security,particularly when relying on chaotic sequences,which may exhibit vulnerabilities to brute-force and predictability-based attacks.To address the limitations,this paper presents a robust and efficient encryption scheme that combines iterative hyper-chaotic systems and Convolutional Neural Networks(CNNs).Firstly,a novel two-dimensional iterative hyper-chaotic system is proposed because of its complex dynamic behavior and expanded parameter space,which can enhance the key space complexity and randomness,ensuring resistance against cryptanalysis.Secondly,an innovative CNN architecture is introduced for generating the key stream for the cryptographic system.CNN architecture exhibits excellent nonlinearity and can further optimize the key generation process.To rigorously evaluate the encryption performance,extensive simulation analyses were conducted,including visualization,statistical histogram,information entropy,correlation,differential attack,and resistance.The method has shown a high NPCR(Number of Pixel Change Rate)of 99.642%and a UACI(Unified Average Changing Intensity)value of 33.465%,exhibiting powerful resistance to differential attacks.A series of comprehensive experimental tests have illustrated that the proposed scheme exhibits superior distribution characteristics,which underscores the robustness and efficacy of the image encryption,and helps for communication security.展开更多
Existing chaotic encryption schemes primarily focus on single types of images,making the design of hybrid image encryption schemes more suitable for practical applications.In this paper,a hyperchaotic map with a spher...Existing chaotic encryption schemes primarily focus on single types of images,making the design of hybrid image encryption schemes more suitable for practical applications.In this paper,a hyperchaotic map with a spherical attractor is proposed,which is constructed using spherical coordinates.Dynamical analyses reveal that the hyperchaotic map exhibits global hyperchaos and high complexity,making it capable of generating more complex chaotic sequences suitable for image encryption.A hybrid encryption scheme based on a hyperchaotic map is proposed for two-dimensional(2D)images,three-dimensional(3D)models,and 3D point clouds.Firstly,the pixels of 2D image and the coordinate data of 3D image are fused into a plaintext cube,which is combined with Hash-512 to obtain the initial value of the hyperchaotic map.Chaotic sequences are utilized for cube space internal confusion and dynamic cross-diffusion.The encrypted images demonstrate high information entropy,and the test results show that the encryption scheme effectively protects the images.The proposed hybrid image encryption scheme provides an efficient solution for securing various types of images.展开更多
This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevale...This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.展开更多
In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quan...In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform(QAr T) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QAr T to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of “Monkey”, “Flower”, and “House”. The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate(NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity(UACI) is 33.41%,and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. F...A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.展开更多
With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.Th...With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-resolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data.展开更多
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded...We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.展开更多
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a hi...In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.展开更多
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels o...This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.展开更多
To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based...To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication.展开更多
A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process...A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process, the diffusion operation with cipher output feedback is introduced. Thus, cipher-irmge is sensitive to both initial keys and plaintext through only one round diffusion operation. The key space is large. As a resuk, the algorithm can effectively resist differential attacks, statistical attacks, brute-force attacks, known plaintext and chosen plaintext attacks. Perforrmnce test and security analysis demonstrates that this algorithm is eficient and reliable, with high potential to be adopted for secure comnmnications.展开更多
In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-rando...In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-random coupling method that can accelerate the system behavior of the fully spatial chaos. Here, because the better chaotic properties include a wide range of parameter settings and better ergodicity than a logistic map, the LP is used in PCLML as f(x). The Kolmogorov–Sinai entropy density and universality and the bifurcation diagram are employed to investigate the chaotic behaviors of the proposed PCLML model. Finally, we apply the LP and PCLML chaotic systems to image encryption to improve the effectiveness and security of the encryption scheme. By combining self-generating matrix model M and dynamic substitution box(S-Box) methods, we design a new image encryption algorithm. Numerical simulations and security analysis have been carried out to demonstrate that the proposed algorithm has a high security level and can efficiently encrypt several different kinds of images into random-like images.展开更多
Recently, two chaotic image encryption schemes have been proposed, in which shuffling the positions and changing the grey values of image pixels are combined. This paper provides the chosen plaintext attack to recover...Recently, two chaotic image encryption schemes have been proposed, in which shuffling the positions and changing the grey values of image pixels are combined. This paper provides the chosen plaintext attack to recover the corresponding plaintext of a given ciphertext. Furthermore, it points out that the two schemes are not sufficiently sensitive to small changes of the plaintext. Based on the given analysis, it proposes an improved algorithm which includes two rounds of substitution and one round of permutation to strengthen the overall performance.展开更多
In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic ...In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.展开更多
基金supported by the National Natural Science Foundation of China(62376106)The Science and Technology Development Plan of Jilin Province(20250102212JC).
文摘Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government Ministry of Science and ICT(MIST)(RS-2022-00165225).
文摘Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.
基金supported by the Guiding Science and Technology Plan Project of Changsha City under Grant kzd2501129by the Natural Science Foundation of Hunan Province(Grant No.2025JJ50368)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.24A0248)the National Natural Science Foundation of China(Grant No.62273141)。
文摘The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system.The self-connection synapse,as a critical form of feedback synapse in Hopfield neurons,plays an essential role in understanding the dynamic behavior of the brain.Synaptic memristors can bring neural network models closer to the complexity of the brain's neural networks.Inspired by this,this study incorporates the nonlinear memory characteristics of synapses into the Hopfield neural network(HNN)by replacing a single self-synapse in a four-dimensional HNN model with a novel cosine memristor model,aiming to more realistically reproduce the dynamical behavior of biological neurons in artificial systems.By performing a dynamical analysis of the system using numerical methods,we find that the model exhibits infinitely many equilibrium points and can induce the formation of rare transient attractors,as well as an arbitrary number of multi-scroll attractors.Additionally,the model demonstrates complex coexisting attractor dynamics,including transient chaos,periodicity,decaying periodicity,and coexisting chaos.Furthermore,the feasibility of the proposed HNN model is verified using a field-programmable gate array(FPGA).Finally,an electronic codebook(ECB)–mode block cipher encryption algorithm is proposed for image encryption.The encryption performance is evaluated,with an information entropy value of 7.9993,demonstrating the excellent randomness of the system-generated numbers.
基金supported in part by the National Key Research and Development Program of China(No.2021YFB3101500)the Fundamental Research Funds for the Central Universities(No.2023RC69).
文摘In wireless communication transmission,image encryption plays a key role in protecting data privacy against unauthorized access.However,conventional encryption methods often face challenges in key space security,particularly when relying on chaotic sequences,which may exhibit vulnerabilities to brute-force and predictability-based attacks.To address the limitations,this paper presents a robust and efficient encryption scheme that combines iterative hyper-chaotic systems and Convolutional Neural Networks(CNNs).Firstly,a novel two-dimensional iterative hyper-chaotic system is proposed because of its complex dynamic behavior and expanded parameter space,which can enhance the key space complexity and randomness,ensuring resistance against cryptanalysis.Secondly,an innovative CNN architecture is introduced for generating the key stream for the cryptographic system.CNN architecture exhibits excellent nonlinearity and can further optimize the key generation process.To rigorously evaluate the encryption performance,extensive simulation analyses were conducted,including visualization,statistical histogram,information entropy,correlation,differential attack,and resistance.The method has shown a high NPCR(Number of Pixel Change Rate)of 99.642%and a UACI(Unified Average Changing Intensity)value of 33.465%,exhibiting powerful resistance to differential attacks.A series of comprehensive experimental tests have illustrated that the proposed scheme exhibits superior distribution characteristics,which underscores the robustness and efficacy of the image encryption,and helps for communication security.
基金Project supported by the Basic Scientific Research Projects of Department of Education of Liaoning Province,China(Grant No.LJ212410152049)the Technological Innovation Projects in the field of artificial intelligence of Liaoning Province,China(Grant No.2023JH26/10300011)。
文摘Existing chaotic encryption schemes primarily focus on single types of images,making the design of hybrid image encryption schemes more suitable for practical applications.In this paper,a hyperchaotic map with a spherical attractor is proposed,which is constructed using spherical coordinates.Dynamical analyses reveal that the hyperchaotic map exhibits global hyperchaos and high complexity,making it capable of generating more complex chaotic sequences suitable for image encryption.A hybrid encryption scheme based on a hyperchaotic map is proposed for two-dimensional(2D)images,three-dimensional(3D)models,and 3D point clouds.Firstly,the pixels of 2D image and the coordinate data of 3D image are fused into a plaintext cube,which is combined with Hash-512 to obtain the initial value of the hyperchaotic map.Chaotic sequences are utilized for cube space internal confusion and dynamic cross-diffusion.The encrypted images demonstrate high information entropy,and the test results show that the encryption scheme effectively protects the images.The proposed hybrid image encryption scheme provides an efficient solution for securing various types of images.
基金Türkiye Bilimsel ve Teknolojik Arastırma Kurumu。
文摘This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province, China (Grant No. 2023CXGC010901)。
文摘In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform(QAr T) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QAr T to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of “Monkey”, “Flower”, and “House”. The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate(NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity(UACI) is 33.41%,and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203)+3 种基金Liaoning Province Science and Technology Innovation Leading Talents Program Project (Grant No. XLYC1802013)Key R&D Projects of Liaoning Province (Grant No. 2019020105JH2/103)Jinan City ‘20 Universities’ Funding Projects Introducing Innovation Team Program (Grant No. 2019GXRC031)Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Grant No. MIMS20-M-02)。
文摘A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.
文摘With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-resolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundation (Grant No. 20100481293)the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037)
文摘We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
基金Project supported by the National Natural Science Foundation of China (Grant No 60472112) and the Foundation for the author of National Excellent Doctoral Dissertation of China (Grant No 200444).
文摘In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001099 and 10971120)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)
文摘This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
基金the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. 2017J045)Provincial Natural Science Foundation of Liaoning (Grant Nos. 20170540060)
文摘To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China under Grants No. 61073187 and No. 61161006 the Hunan Provincial Natural Science Foundation of China under Grant No. 10JJ6093 and the Hunan Provincial Science and Technology Program under Ccant No. 2010GK2003.
文摘A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process, the diffusion operation with cipher output feedback is introduced. Thus, cipher-irmge is sensitive to both initial keys and plaintext through only one round diffusion operation. The key space is large. As a resuk, the algorithm can effectively resist differential attacks, statistical attacks, brute-force attacks, known plaintext and chosen plaintext attacks. Perforrmnce test and security analysis demonstrates that this algorithm is eficient and reliable, with high potential to be adopted for secure comnmnications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61672124,61370145,and 61173183)the Password Theory Project of the13th Five-Year Plan National Cryptography Development Fund,China(Grant No.MMJJ20170203)+1 种基金the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation of Fujian Province of China(Grant No.2018J01100)
文摘In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-random coupling method that can accelerate the system behavior of the fully spatial chaos. Here, because the better chaotic properties include a wide range of parameter settings and better ergodicity than a logistic map, the LP is used in PCLML as f(x). The Kolmogorov–Sinai entropy density and universality and the bifurcation diagram are employed to investigate the chaotic behaviors of the proposed PCLML model. Finally, we apply the LP and PCLML chaotic systems to image encryption to improve the effectiveness and security of the encryption scheme. By combining self-generating matrix model M and dynamic substitution box(S-Box) methods, we design a new image encryption algorithm. Numerical simulations and security analysis have been carried out to demonstrate that the proposed algorithm has a high security level and can efficiently encrypt several different kinds of images into random-like images.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No Y2007G43)
文摘Recently, two chaotic image encryption schemes have been proposed, in which shuffling the positions and changing the grey values of image pixels are combined. This paper provides the chosen plaintext attack to recover the corresponding plaintext of a given ciphertext. Furthermore, it points out that the two schemes are not sufficiently sensitive to small changes of the plaintext. Based on the given analysis, it proposes an improved algorithm which includes two rounds of substitution and one round of permutation to strengthen the overall performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)
文摘In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.