Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their w...Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their work,titled'Structure and regulation of the chromatin remodeller ISWI',in Nature(2016,540:466—469).Chromatin is the life blueprint of eukaryotes.Chromatin remodellers utilize the energy of ATP hydrolysis to move,destabilize,eject,or restructure nucleosomes,building and rebuilding the blueprint展开更多
Plant reproduction requires the coordinated development of both male and female reproductive organs.Jasmonic acid(JA)plays an essential role in stamen filament elongation.However,the mechanism by which the JA biosynth...Plant reproduction requires the coordinated development of both male and female reproductive organs.Jasmonic acid(JA)plays an essential role in stamen filament elongation.However,the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear.Here,we show that the chromatin remodeling complex Imitation of Switch(ISWI)promotes stamen filament elongation by regulating JA biosynthesis.We show that AT-Rich Interacting Domain 5(ARID5)interacts with CHR11,CHR17,and RLT1,several known subunits of ISWI.Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments.RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants.Consistently,the JA levels are drastically decreased in both arid5 and rlt mutants.Chromatin immunoprecipitationquantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes.Importantly,exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants,leading to the partial recovery of fertility.Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI,thereby promoting stamen filament elongation in Arabidopsis.展开更多
Chromatin remodeling complexes serve as crucial regulators of chromatin structure in eukaryotes,govern-ing the transcription,DNA repair,and genome stability.Compared with chromatin remodelers in yeast and animals,plan...Chromatin remodeling complexes serve as crucial regulators of chromatin structure in eukaryotes,govern-ing the transcription,DNA repair,and genome stability.Compared with chromatin remodelers in yeast and animals,plant chromatin remodelers exhibit both conserved and lineage-specific features,which facilitate unique adaptive responses.Cutting-edge approaches in biochemistry,epigenomics,and proteomics are revealing unprecedented insights into plant chromatin remodeling mechanisms,and genetic studies continue to demonstrate their essential roles in maintaining chromatin state homeostasis during plant growth and stress adaptation.This review synthesizes current understanding of plant chromatin remodel-ing complexes,with particular focuses on their specialized subunit compositions,mechanistic diversity,and integrative roles in epigenetic regulation.Furthermore,we highlight how these complexes interact with histone modifications,DNA methylation pathways,and transcription factor networks to orchestrate plantdevelopmentandstress responses.展开更多
Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various bi...Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various biological functions of core and accessory subunits of chromatin-remodeling complexes in plants,the identification and characterization of chromatin-remodeling complexes in plants is lagging behind that in yeast and animals.Recent studies determined whether and how the Arabidopsis SWI/SNF,ISWI,INO80,SWR1,and CHD chromatin remodelers function in multi-subunit complexes in Arabidopsis.Both conserved and plant-specific subunits of chromatin-remodeling complexes have been identified and characterized.These findings provide a basis for further studies of the molecular mechanisms by which the chromatinremodeling complexes function in plants.展开更多
文摘Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their work,titled'Structure and regulation of the chromatin remodeller ISWI',in Nature(2016,540:466—469).Chromatin is the life blueprint of eukaryotes.Chromatin remodellers utilize the energy of ATP hydrolysis to move,destabilize,eject,or restructure nucleosomes,building and rebuilding the blueprint
基金supported by the National Natural Science Foundation of China(31830045,32025005)。
文摘Plant reproduction requires the coordinated development of both male and female reproductive organs.Jasmonic acid(JA)plays an essential role in stamen filament elongation.However,the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear.Here,we show that the chromatin remodeling complex Imitation of Switch(ISWI)promotes stamen filament elongation by regulating JA biosynthesis.We show that AT-Rich Interacting Domain 5(ARID5)interacts with CHR11,CHR17,and RLT1,several known subunits of ISWI.Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments.RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants.Consistently,the JA levels are drastically decreased in both arid5 and rlt mutants.Chromatin immunoprecipitationquantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes.Importantly,exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants,leading to the partial recovery of fertility.Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI,thereby promoting stamen filament elongation in Arabidopsis.
基金the National Key Research and Development Program of China(2024YFD1200800)the National Natural Science Foundation of China(32470346).
文摘Chromatin remodeling complexes serve as crucial regulators of chromatin structure in eukaryotes,govern-ing the transcription,DNA repair,and genome stability.Compared with chromatin remodelers in yeast and animals,plant chromatin remodelers exhibit both conserved and lineage-specific features,which facilitate unique adaptive responses.Cutting-edge approaches in biochemistry,epigenomics,and proteomics are revealing unprecedented insights into plant chromatin remodeling mechanisms,and genetic studies continue to demonstrate their essential roles in maintaining chromatin state homeostasis during plant growth and stress adaptation.This review synthesizes current understanding of plant chromatin remodel-ing complexes,with particular focuses on their specialized subunit compositions,mechanistic diversity,and integrative roles in epigenetic regulation.Furthermore,we highlight how these complexes interact with histone modifications,DNA methylation pathways,and transcription factor networks to orchestrate plantdevelopmentandstress responses.
基金supported by the National Natural Science Foundation of China(32025003)the National Key Research and Development Program of China(2016YFA0500801)from the Chinese Ministry of Science and Technology。
文摘Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various biological functions of core and accessory subunits of chromatin-remodeling complexes in plants,the identification and characterization of chromatin-remodeling complexes in plants is lagging behind that in yeast and animals.Recent studies determined whether and how the Arabidopsis SWI/SNF,ISWI,INO80,SWR1,and CHD chromatin remodelers function in multi-subunit complexes in Arabidopsis.Both conserved and plant-specific subunits of chromatin-remodeling complexes have been identified and characterized.These findings provide a basis for further studies of the molecular mechanisms by which the chromatinremodeling complexes function in plants.