A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wa...A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method.展开更多
对2008—2014年由气象、电离层和气候卫星联合观测系统(Constellation Observing System for Meteorology Ionosphere and Climate,COSMIC)掩星观测与最新版国际电离层参考模型IRI-2016输出得到的电离层峰值参数(峰值密度NmF2与峰值高度...对2008—2014年由气象、电离层和气候卫星联合观测系统(Constellation Observing System for Meteorology Ionosphere and Climate,COSMIC)掩星观测与最新版国际电离层参考模型IRI-2016输出得到的电离层峰值参数(峰值密度NmF2与峰值高度hmF2)在中国区域进行了比较。IRI-2016模型输出值与COSMIC掩星反演值的相关性在太阳活动高年(2011—2014年)整体上高于太阳活动低年(2008—2010年)。在低年春秋季的当地时间(local time,LT)12:00—14:00,IRI-2016相对于COSMIC掩星在30°N^55°N区域内对NmF2和hmF2分别存在低估和高估现象,在15°N^30°N区域内则恰恰相反。对于NmF2,采用IRI_CCIR和IRI_URSI两种选项的模型输出值在中午时分均存在高估,在低年高估更为显著。对于hmF2,采用IRI_CCIR和IRI_AMTB两种选项的模型输出值在低年各季节均存在高估,且IRI_AMTB选项高估更显著,冬季最突出。结果表明,在中国区域由IRI-2016模型计算NmF2和hmF2时,分别推荐使用IRI_CCIR和IRI_Shubin选项。展开更多
The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content(TEC)...The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content(TEC) variations in small scales for China. In this paper, a regional ionospheric grid model(RIGM) with high spatial-temporal resolution(0.5 0.5 and 10-min interval) in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China(CMONOC) and the International GNSS Service(IGS). The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square(RMS) with respect to Center for Orbit Determination in Europe(CODE) Global Ionosphere Maps(GIMs) is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.展开更多
文摘A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method.
文摘对2008—2014年由气象、电离层和气候卫星联合观测系统(Constellation Observing System for Meteorology Ionosphere and Climate,COSMIC)掩星观测与最新版国际电离层参考模型IRI-2016输出得到的电离层峰值参数(峰值密度NmF2与峰值高度hmF2)在中国区域进行了比较。IRI-2016模型输出值与COSMIC掩星反演值的相关性在太阳活动高年(2011—2014年)整体上高于太阳活动低年(2008—2010年)。在低年春秋季的当地时间(local time,LT)12:00—14:00,IRI-2016相对于COSMIC掩星在30°N^55°N区域内对NmF2和hmF2分别存在低估和高估现象,在15°N^30°N区域内则恰恰相反。对于NmF2,采用IRI_CCIR和IRI_URSI两种选项的模型输出值在中午时分均存在高估,在低年高估更为显著。对于hmF2,采用IRI_CCIR和IRI_AMTB两种选项的模型输出值在低年各季节均存在高估,且IRI_AMTB选项高估更显著,冬季最突出。结果表明,在中国区域由IRI-2016模型计算NmF2和hmF2时,分别推荐使用IRI_CCIR和IRI_Shubin选项。
基金supported by the National Natural Science Foundation of China (NSFC) Project (11573052)Shanghai Science and Technology Commission Project (12DZ2273300)Key Laboratory of Planetary Sciences, Chinese Academy of Sciences
文摘The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content(TEC) variations in small scales for China. In this paper, a regional ionospheric grid model(RIGM) with high spatial-temporal resolution(0.5 0.5 and 10-min interval) in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China(CMONOC) and the International GNSS Service(IGS). The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square(RMS) with respect to Center for Orbit Determination in Europe(CODE) Global Ionosphere Maps(GIMs) is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.