Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor ...Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.展开更多
民用飞机客舱系统航电设备间交联采用了基于IEEE 802.3协议的菊花链网络,随着客舱电子设备数量增加,基于IEEE 802.3协议的菊花链网络面临传输时延增大、网络收敛时间变长、网络整体性能下降等一系列问题。针对上述问题,提出基于EtherCAT...民用飞机客舱系统航电设备间交联采用了基于IEEE 802.3协议的菊花链网络,随着客舱电子设备数量增加,基于IEEE 802.3协议的菊花链网络面临传输时延增大、网络收敛时间变长、网络整体性能下降等一系列问题。针对上述问题,提出基于EtherCAT(Ethernet for Control Automation Technology)协议构建客舱系统菊花链网络,使用OPNET、Mininet网络仿真工具对该网络架构进行仿真验证。仿真结果显示,使用EtherCAT协议的菊花链网络在误码率、丢包和响应时延方面均优于IEEE 802.3协议,同时保证了网络的高效运行,EtherCAT协议菊花链网络的正确性和适用性得到验证。展开更多
An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible dep...An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms.The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link.The simulation results show that the ARROW-WTCP achieves strong stability,max-min fairness in dynamic networks,fast convergence to efficiency without introducing much excess traffic,and almost full link utilization in the steady state.It outperforms the XCP-B (eXplicit Control Protocol Blind),the wireless version of XCP,in terms of stability,fairness,convergence and utilization in wireless networks.展开更多
IEEE 802.16e, as an amendment and corrigendum to the IEEE 802.16-2004, published on 28 February 2006, and intended to update and expand IEEE 802.16-2004 to allow for mobile subscriber stations. This paper summarizes t...IEEE 802.16e, as an amendment and corrigendum to the IEEE 802.16-2004, published on 28 February 2006, and intended to update and expand IEEE 802.16-2004 to allow for mobile subscriber stations. This paper summarizes the key management protocol belonging to security part of the IEEE 802.16e, which includes security negotiation, authorization, key derivation, handshake, and key transportation. While these building blocks are well designed, we point out some unwelcome features for these building blocks. We also give out suggestions to diminish the proposed problems.展开更多
Frame resolution and physical layer (PHY) protocol type detection are the basis of research and development of intrusion prevention systems for IEEE 802.11 wireless network. Aiming at the problems which cannot be solv...Frame resolution and physical layer (PHY) protocol type detection are the basis of research and development of intrusion prevention systems for IEEE 802.11 wireless network. Aiming at the problems which cannot be solved by the specifications export, this paper proposed a MAC frame analytical method and a PHY protocol type detection algorithm based on parsing the IEEE 802.11packets captured by the library Libpcap. The packet structure and the length of the frame preamble (18 or 26 bytes) are presented. Then the methods of transforming byte-order and resolving sub-fields are given. A detection algorithm of PHY protocol type is proposed based on the experiments and examples are given to verify these methods. This work can be a reference for the R & D related to link layer frame analysis.展开更多
A mobile ad hoc network (MANET) is a collection of nodes equipped with wireless communications and a networking capability without central network control. Nodes in a MANET are free to move and organize themselves in ...A mobile ad hoc network (MANET) is a collection of nodes equipped with wireless communications and a networking capability without central network control. Nodes in a MANET are free to move and organize themselves in an arbitrary fashion. Energy-efficient design is a significant challenge due to the characteristics of MANETs such as distributed control, constantly changing network topology, and mobile users with limited power supply. The IEEE 802.11 MAC protocol includes a power saving mechanism, but it has many limitations. A new energy-efficient MAC protocol (EE-MAC) is proposed in this paper. It is shown that EE-MAC performs better than IEEE 802.11 power saving mode and exceeds IEEE 802.11 with respect to balancing network throughput and energy savings.展开更多
文摘Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.
文摘民用飞机客舱系统航电设备间交联采用了基于IEEE 802.3协议的菊花链网络,随着客舱电子设备数量增加,基于IEEE 802.3协议的菊花链网络面临传输时延增大、网络收敛时间变长、网络整体性能下降等一系列问题。针对上述问题,提出基于EtherCAT(Ethernet for Control Automation Technology)协议构建客舱系统菊花链网络,使用OPNET、Mininet网络仿真工具对该网络架构进行仿真验证。仿真结果显示,使用EtherCAT协议的菊花链网络在误码率、丢包和响应时延方面均优于IEEE 802.3协议,同时保证了网络的高效运行,EtherCAT协议菊花链网络的正确性和适用性得到验证。
基金Projects(60873265,60903222) supported by the National Natural Science Foundation of China Project(IRT0661) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms.The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link.The simulation results show that the ARROW-WTCP achieves strong stability,max-min fairness in dynamic networks,fast convergence to efficiency without introducing much excess traffic,and almost full link utilization in the steady state.It outperforms the XCP-B (eXplicit Control Protocol Blind),the wireless version of XCP,in terms of stability,fairness,convergence and utilization in wireless networks.
基金Supported by the National Natural Science Foundation of China (60473027)
文摘IEEE 802.16e, as an amendment and corrigendum to the IEEE 802.16-2004, published on 28 February 2006, and intended to update and expand IEEE 802.16-2004 to allow for mobile subscriber stations. This paper summarizes the key management protocol belonging to security part of the IEEE 802.16e, which includes security negotiation, authorization, key derivation, handshake, and key transportation. While these building blocks are well designed, we point out some unwelcome features for these building blocks. We also give out suggestions to diminish the proposed problems.
文摘Frame resolution and physical layer (PHY) protocol type detection are the basis of research and development of intrusion prevention systems for IEEE 802.11 wireless network. Aiming at the problems which cannot be solved by the specifications export, this paper proposed a MAC frame analytical method and a PHY protocol type detection algorithm based on parsing the IEEE 802.11packets captured by the library Libpcap. The packet structure and the length of the frame preamble (18 or 26 bytes) are presented. Then the methods of transforming byte-order and resolving sub-fields are given. A detection algorithm of PHY protocol type is proposed based on the experiments and examples are given to verify these methods. This work can be a reference for the R & D related to link layer frame analysis.
文摘A mobile ad hoc network (MANET) is a collection of nodes equipped with wireless communications and a networking capability without central network control. Nodes in a MANET are free to move and organize themselves in an arbitrary fashion. Energy-efficient design is a significant challenge due to the characteristics of MANETs such as distributed control, constantly changing network topology, and mobile users with limited power supply. The IEEE 802.11 MAC protocol includes a power saving mechanism, but it has many limitations. A new energy-efficient MAC protocol (EE-MAC) is proposed in this paper. It is shown that EE-MAC performs better than IEEE 802.11 power saving mode and exceeds IEEE 802.11 with respect to balancing network throughput and energy savings.