期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
1
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier 被引量:1
2
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
在线阅读 下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:30
3
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
在线阅读 下载PDF
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
4
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
5
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
6
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
Tourism Route Recommendation Based on A Multi-Objective Evolutionary Algorithm Using Two-Stage Decomposition and Pareto Layering 被引量:1
7
作者 Xiaoyao Zheng Baoting Han Zhen Ni 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期486-500,共15页
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ... Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists. 展开更多
关键词 evolutionary algorithm multi-objective optimization Pareto optimization tourism route recommendation two-stage decomposition
在线阅读 下载PDF
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking 被引量:1
8
作者 Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期207-211,共5页
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so... Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. 展开更多
关键词 multi-objective optimal problem multi-objective optimal evolutionary algorithm Pareto dominance tree structure dynamic space-compressed mutative operator
在线阅读 下载PDF
Do Search and Selection Operators Play Important Roles in Multi-Objective Evolutionary Algorithms:A Case Study 被引量:1
9
作者 Yan Zhen-yu, Kang Li-shan, Lin Guang-ming ,He MeiState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, ChinaSchool of Computer Science, UC, UNSW Australian Defence Force Academy, Northcott Drive, Canberra, ACT 2600 AustraliaCapital Bridge Securities Co. ,Ltd, Floor 42, Jinmao Tower, Shanghai 200030, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期195-201,共7页
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an... Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators. 展开更多
关键词 multi-objective evolutionary algorithm convergence property analysis search operator selection operator Markov chain
在线阅读 下载PDF
Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi-objective Evolutionary Algorithm
10
作者 刘洪 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第2期36-40,共5页
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ... A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles. 展开更多
关键词 multi-objective design(MOD) multidisciplinary design optimization (MDO) evolutionary algorithm synergetic optimization decision making scheme interactive preference articulation Pareto optimal set
在线阅读 下载PDF
EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING
11
作者 Lei Deming Wu Zhiming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期494-497,共4页
A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict... A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority role. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed, in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling. 展开更多
关键词 Job shop Crowding measure Archive maintenance Fitness assignment multi-objective evolutionary algorithm
在线阅读 下载PDF
Even Search in a Promising Region for Constrained Multi-Objective Optimization 被引量:3
12
作者 Fei Ming Wenyin Gong Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期474-486,共13页
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,... In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs. 展开更多
关键词 Constrained multi-objective optimization even search evolutionary algorithms promising region real-world problems
在线阅读 下载PDF
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses 被引量:6
13
作者 Wen-Jing Hong Peng Yang Ke Tang 《International Journal of Automation and computing》 EI CSCD 2021年第2期155-169,共15页
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a... Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed. 展开更多
关键词 Large-scale multi-objective optimization high-dimensional search space evolutionary computation evolutionary algorithms SCALABILITY
原文传递
Constrained Multi-Objective Optimization With Deep Reinforcement Learning Assisted Operator Selection
14
作者 Fei Ming Wenyin Gong +1 位作者 Ling Wang Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期919-931,共13页
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev... Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs. 展开更多
关键词 Constrained multi-objective optimization deep Qlearning deep reinforcement learning(DRL) evolutionary algorithms evolutionary operator selection
在线阅读 下载PDF
An Improved Cuckoo Search Algorithm for Multi-Objective Optimization 被引量:2
15
作者 TIAN Mingzheng HOU Kuolin +1 位作者 WANG Zhaowei WAN Zhongping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期289-294,共6页
The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are v... The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly. 展开更多
关键词 multi-objective optimization evolutionary algorithm Cuckoo search Levy flight
原文传递
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
16
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
Solving A Kind of High Complexity Multi-Objective Problems by A Fast Algorithm
17
作者 Zeng San-you, Ding Li-xin, Kang Li-shanDepartment of Computer Science,China University of GeoSciences, Wuhan 430074, Hubei, China Department of Computer Science, Zhuzhou Institute of Technology , Zhuzhou 412008, Hunan, China State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期183-188,共6页
A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to ... A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions. 展开更多
关键词 evolutionary algorithms orthogonal design multi-objective optimization Pareto-optimal set
在线阅读 下载PDF
Efficient multi-objective CMA-ES algorithm assisted by knowledge-extraction-based variable-fidelity surrogate model
18
作者 Zengcong LI Kuo TIAN +1 位作者 Shu ZHANG Bo WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期213-232,共20页
To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is prese... To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is presented. In the first part, the KE-VFS model is established. Firstly, the optimization is performed using the low-fidelity surrogate model to obtain the Low-Fidelity Non-Dominated Solutions(LF-NDS). Secondly, aiming to obtain the High-Fidelity(HF) sample points located in promising areas, the K-means clustering algorithm and the space-filling strategy are used to extract knowledge from the LF-NDS to the HF space. Finally,the KE-VFS model is established by means of the obtained HF and LF sample points. In the second part, a novel model management based on the Modified Hypervolume Improvement(MHVI) criterion and pre-screening strategy is proposed. In each generation of KE-VFS-CMA-ES, excessive candidate points are firstly generated and then calculated by the MHVI criterion to find out a few potential points, which will be evaluated by the HF model. Through the above two parts,the promising areas can be detected and the potential points can be screened out, which contributes to speeding up the optimization process twofold. Three classic benchmark functions and a time-consuming engineering case of the aerospace integrally stiffened shell are studied, and results illustrate the excellent efficiency, robustness and applicability of KE-VFS-CMA-ES compared with other four known multi-objective optimization algorithms. 展开更多
关键词 Covariance matrix adaptation evolution strategy Model management multi-objective optimization Surrogate-assisted evolutionary algorithm Variable-fidelity surrogate model
原文传递
Constraint-Feature-Guided Evolutionary Algorithms for Multi-Objective Multi-Stage Weapon-Target Assignment Problems
19
作者 WANG Danjing XIN Bin +3 位作者 WANG Yipeng ZHANG Jia DENG Fang WANG Xianpeng 《Journal of Systems Science & Complexity》 2025年第3期972-999,共28页
The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candi... The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candidate decision schemes remains an urgent challenge.Based on these requirements,a constrained multi-objective multi-stage weapon-target assignment(CMOMWTA)model is established in this paper.To solve this problem,three constraint-feature-guided multi-objective evolutionary algorithms(CFG-MOEAs)are proposed under three typical multi-objective evolutionary frameworks(i.e.,NSGA-Ⅱ,NSGA-Ⅲ,and MOEA/D)to obtain various high-quality candidate decision schemes.Firstly,a constraint-feature-guided reproduction strategy incorporating crossover,mutation,and repair is developed to handle complex constraints.It extracts common row and column features from different linear constraints to generate the feasible offspring population.Then,a variable-length integer encoding method is adopted to concisely denote the decision schemes.Moreover,a hybrid initialization method incorporating both heuristic methods and random sampling is designed to better guide the population.Systemic experiments are conducted on three CFG-MOEAs to verify their effectiveness.The superior algorithm CFG-NSGA-Ⅱamong three CFG-MOEAs is compared with two state-of-the-art CMOMWTA algorithms,and extensive experimental results demonstrate the effectiveness and superiority of CFG-NSGA-Ⅱ. 展开更多
关键词 evolutionary algorithms constrained multi-objective optimization problem constraint handling weapon-target assignment
原文传递
一种基于Hypervolume指标的自适应邻域多目标进化算法 被引量:12
20
作者 郑金华 李珂 +1 位作者 李密青 文诗华 《计算机研究与发展》 EI CSCD 北大核心 2012年第2期312-326,共15页
通过定义反映个体之间邻近程度的指标(个体的树邻域包含关系),在考虑个体间支配关系的基础上,利用个体与其周边个体的树邻域密度进行适应度赋值;提出了一种2,3维情况下个体独立支配区域的Hypervolume指标的计算方法,该方法用于评价个体... 通过定义反映个体之间邻近程度的指标(个体的树邻域包含关系),在考虑个体间支配关系的基础上,利用个体与其周边个体的树邻域密度进行适应度赋值;提出了一种2,3维情况下个体独立支配区域的Hypervolume指标的计算方法,该方法用于评价个体对群体的贡献时只需要1次计算(同类方法需要2次计算);当外部种群中非支配个体数目超过规定规模时,根据个体独立支配区域的Hypervolume指标的大小对其进行修剪;在此基础上,提出了一种基于Hypervolume指标的自适应邻域多目标进化算法ANMOEA?HI.对比实验结果表明,ANMOEA?HI在保证了解集收敛性的同时亦拥有良好的分布性. 展开更多
关键词 最小生成树 树邻域密度 适应度赋值 hypervolume指标 种群维护 多目标进化算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部