Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca...Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things.This work presents a highly flexib...Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things.This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator(F-TENG)with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication.The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves.A self-powered wearable keyboard(SPWK)is also fabricated by integrating large-area F-TENG sensor arrays,which not only can trace and record electrophysiological signals,but also can identify individuals’typing characteristics by means of the Haar wavelet.Based on these merits,the SPWK has promising applications in the realm of wearable electronics,self-powered sensors,cyber security,and artificial intelligences.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgen...Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research.展开更多
Hydrogel-based triboelectric nanoge nerator(TENG)has a promising applied prospect in wearable electronic devices.However,its low performance,poor stability,insufficient recyclability and inferior self-healing seriousl...Hydrogel-based triboelectric nanoge nerator(TENG)has a promising applied prospect in wearable electronic devices.However,its low performance,poor stability,insufficient recyclability and inferior self-healing seriously hinder its development.Herein,we report a robust route to a liquid metal(LM)/polyvinyl alcohol(PVA)hydrogel-based TENG(LP-TENG).Owing to the intrinsically liquid feature of conductive LM within the flexible PVA hydrogel,the as-prepared LP-TENG exhibited comprehensiye advantages of adaptability,biocompatibility,outstanding electrical performance,superior stability,recyclability and diverse applications,which were unattainable by traditional systems.Concretely,the LP-TENG delivered appealing open circuit voltage of 250 V,short circuit current of 4μA and transferred charge of 120 nC with high stability,outperforming most advanced TENG systems.The LP-TENG was successfully employed for versatile applications with multifunctionality,including human motion detection,handwriting recognition,energy collection,message transmission and human-machine interaction.This work presents significant prospects for crafting advanced materials and devices in the fields of wearable electronics,flexible skin and smart robots.展开更多
Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation...Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.展开更多
Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,...Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,a robotic teleoperation system for precise robotic manipulation is established.The data glove and the 7-degrees of freedom(DOFs)force feedback controller are used for the remote control interaction.The control system and the monitor system are designed for the remote precise manipulation.The monitor system contains an image acquisition system and a human-machine interaction module,and aims to simulate and detect the robot running state.Besides,a visual object tracking algorithm is developed to estimate the states of the dynamic system from noisy observations.The established robotic teleoperation systemis applied to a series of experiments,and high-precision results are obtained,showing the effectiveness of the physical system.展开更多
Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional de...Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.展开更多
In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operati...In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.展开更多
As the Internet of Things advances,gesture recognition emerges as a prominent domain in human-machine interaction(HMI).However,interactive wearables based on conductive hydrogels for individuals with single-arm functi...As the Internet of Things advances,gesture recognition emerges as a prominent domain in human-machine interaction(HMI).However,interactive wearables based on conductive hydrogels for individuals with single-arm functionality or disabilities remain underexplored.Here,we devised a wearable one-handed keyboard with gesture recognition,employing machine learning algorithms and hydrogel-based mechanical sensors to boost productivity.PCG(PAM/CMC/rGO)hydrogels are composed of polyacrylamide(PAM),sodium carboxymethyl cellulose(CMC),and reduced graphene oxide(rGO),which function as a strain,pressure sensor,and electrode material.The PAM chains offer the gel’s elasticity by covalent cross-linking,while the biocompatible CMC improves the dispersion of rGO and promotes electromechanical properties.Integrating rGO sheets into the polymer matrix facilitates cross-linking and generates supple-mentary conductive pathways,thereby augmenting the gel system’s elasticity,sensitivity,and durability.Our hydrogel sensors include high sensitivity(gage factor(GF)=8.18,395.6%-551.96%)and superior pressure sensing capabilities(Sensitivity(S)=0.3116 kPa^(-1),0-9.82 kPa).Furthermore,we developed a wearable keyboard with up to 98.13%accuracy using convolutional neural networks and a custom data acquisition system.This study establishes the groundwork for creating multifunctional gel sensors for intelligent machines,wearable devices,and brain-computer interfaces.展开更多
Photothermoelectric(PTE)photodetectors with selfpowered and uncooled advantages have attracted much interest due to the wide application prospects in the military and civilian fields.However,traditional PTE photodetec...Photothermoelectric(PTE)photodetectors with selfpowered and uncooled advantages have attracted much interest due to the wide application prospects in the military and civilian fields.However,traditional PTE photodetectors lack of mechanical flexibility and cannot operate independently without the test instrument.Herein,we present a flexible PTE photodetector capable of dual-mode output,combining electrical and optical signal generation for enhanced functionality.Using solution processing,high-quality MXene thin films are assembled on asymmetric electrodes as the photosensitive layer.The geometrically asymmetric electrode design significantly enhances the responsivity,achieving 0.33 m A W^(-1)under infrared illumination,twice that of the symmetrical configuration.This improvement stems from optimized photothermal conversion and an expanded temperature gradient.The PTE device maintains stable performance after 300 bending cycles,demonstrating excellent flexibility.A new energy conversion pathway has been established by coupling the photothermal conversion of MXene with thermochromic composite materials,leading to a real-time visualization of invisible infrared radiation.Leveraging this functionality,we demonstrate the first human-machine collaborative infrared imaging system,wherein the dual-mode photodetector arrays synchronously generate human-readable pattern and machine-readable pattern.Our study not only provides a new solution for functional integration of flexible photodetectors,but also sets a new benchmark for human-machine collaborative optoelectronics.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordinat...In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
Indoor scene semantic segmentation is essential for enabling robots to understand and interact with their environments effectively.However,numerous challenges remain unresolved,particularly in single-robot systems,whi...Indoor scene semantic segmentation is essential for enabling robots to understand and interact with their environments effectively.However,numerous challenges remain unresolved,particularly in single-robot systems,which often struggle with the complexity and variability of indoor scenes.To address these limitations,we introduce a novel multi-robot collaborative framework based on multiplex interactive learning(MPIL)in which each robot specialises in a distinct visual task within a unified multitask architecture.During training,the framework employs task-specific decoders and cross-task feature sharing to enhance collaborative optimisation.At inference time,robots operate independently with optimised models,enabling scalable,asynchronous and efficient deployment in real-world scenarios.Specifically,MPIL employs specially designed modules that integrate RGB and depth data,refine feature representations and facilitate the simultaneous execution of multiple tasks,such as instance segmentation,scene classification and semantic segmentation.By leveraging these modules,distinct agents within multi-robot systems can effectively handle specialised tasks,thereby enhancing the overall system's flexibility and adaptability.This collaborative effort maximises the strengths of each robot,resulting in a more comprehensive understanding of environments.Extensive experiments on two public benchmark datasets demonstrate MPIL's competitive performance compared to state-of-the-art approaches,highlighting the effectiveness and robustness of our multi-robot system in complex indoor environments.展开更多
Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interactio...Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interaction patterns underlying human activities.Nevertheless,the inherent heterogeneity in multimodal migration big data has been ignored.This study conducts an in-depth comparison and quantitative analysis through a comprehensive lens of spatial association.Initially,the intercity interactive networks in China were constructed,utilizing migration data from Baidu and AutoNavi collected during the same time period.Subsequently,the characteristics and spatial structure similarities of the two types of intercity interactive networks were quantitatively assessed and analyzed from overall(network)and local(node)perspectives.Furthermore,the precision of these networks at the local scale is corroborated by constructing an intercity network from mobile phone(MP)data.Results indicate that the intercity interactive networks in China,as delineated by Baidu and AutoNavi migration flows,exhibit a high degree of structure equivalence.The correlation coefficient between these two networks is 0.874.Both networks exhibit a pronounced spatial polarization trend and hierarchical structure.This is evident in their distinct core and peripheral structures,as well as in the varying importance and influence of different nodes within the networks.Nevertheless,there are notable differences worthy of attention.Baidu intercity interactive network exhibits pronounced cross-regional effects,and its high-level interactions are characterized by a“rich-club”phenomenon.The AutoNavi intercity interactive network presents a more significant distance attenuation effect,and the high-level interactions display a gradient distribution pattern.Notably,there exists a substantial correlation between the AutoNavi and MP networks at the local scale,evidenced by a high correlation coefficient of 0.954.Furthermore,the“spatial dislocations”phenomenon was observed within the spatial structures at different levels,extracted from the Baidu and AutoNavi intercity networks.However,the measured results of network spatial structure similarity from three dimensions,namely,node location,node size,and local structure,indicate a relatively high similarity and consistency between the two networks.展开更多
This study focuses on the application of dynamic route planning and augmented reality(AR)technology within interactive theme trail platforms.Taking the“Dongpo Travelogue”digital guide mini-program as a case study,it...This study focuses on the application of dynamic route planning and augmented reality(AR)technology within interactive theme trail platforms.Taking the“Dongpo Travelogue”digital guide mini-program as a case study,it employs empirical analysis to explore its impact on enhancing visitor engagement and cultural identification.Employing a combined quantitative and qualitative methodology,the study analyses the platform’s functional implementation in route planning,cultural narration,interactive games,and their impact on visitor experience.Findings indicate that the integration of dynamic route planning and AR technology significantly enhances visitor engagement and cultural identity,offering novel insights for the digital transformation of the cultural tourism industry.展开更多
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)the Scientific Research Project of PowerChina Huadong Engineering Corporation Limited(HDEC-2022-0301).
文摘Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金the National Key R&D Project from Minister of Science and Technology(Grant No.2016YFA0202704)the Beijing Municipal Natural Science Foundation(Grant No.2212052)+1 种基金the Shanghai Sailing Program(Grant No.19S28101)the Fundamental Research Funds for the Central Universities(Grant No.19D128102).
文摘Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things.This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator(F-TENG)with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication.The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves.A self-powered wearable keyboard(SPWK)is also fabricated by integrating large-area F-TENG sensor arrays,which not only can trace and record electrophysiological signals,but also can identify individuals’typing characteristics by means of the Haar wavelet.Based on these merits,the SPWK has promising applications in the realm of wearable electronics,self-powered sensors,cyber security,and artificial intelligences.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
基金supported in part by the National Natural Science Foundation of China(U181321461773369+2 种基金61903360)the Selfplanned Project of the State Key Laboratory of Robotics(2020-Z12)China Postdoctoral Science Foundation funded project(2019M661155)。
文摘Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research.
基金financially supported by the Natural Science Foundation of China(Nos.22109120,62104170 and 82202757)Zhejiang Provincial Natural Science Foundation of China(Nos.LQ21B030002 and LY23F040001)。
文摘Hydrogel-based triboelectric nanoge nerator(TENG)has a promising applied prospect in wearable electronic devices.However,its low performance,poor stability,insufficient recyclability and inferior self-healing seriously hinder its development.Herein,we report a robust route to a liquid metal(LM)/polyvinyl alcohol(PVA)hydrogel-based TENG(LP-TENG).Owing to the intrinsically liquid feature of conductive LM within the flexible PVA hydrogel,the as-prepared LP-TENG exhibited comprehensiye advantages of adaptability,biocompatibility,outstanding electrical performance,superior stability,recyclability and diverse applications,which were unattainable by traditional systems.Concretely,the LP-TENG delivered appealing open circuit voltage of 250 V,short circuit current of 4μA and transferred charge of 120 nC with high stability,outperforming most advanced TENG systems.The LP-TENG was successfully employed for versatile applications with multifunctionality,including human motion detection,handwriting recognition,energy collection,message transmission and human-machine interaction.This work presents significant prospects for crafting advanced materials and devices in the fields of wearable electronics,flexible skin and smart robots.
文摘Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.
基金NSFC-Shenzhen Robotics Research Center Project(No.U2013207)the Beijing Science and Technology Plan Project(No.Z191100008019008)。
文摘Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,a robotic teleoperation system for precise robotic manipulation is established.The data glove and the 7-degrees of freedom(DOFs)force feedback controller are used for the remote control interaction.The control system and the monitor system are designed for the remote precise manipulation.The monitor system contains an image acquisition system and a human-machine interaction module,and aims to simulate and detect the robot running state.Besides,a visual object tracking algorithm is developed to estimate the states of the dynamic system from noisy observations.The established robotic teleoperation systemis applied to a series of experiments,and high-precision results are obtained,showing the effectiveness of the physical system.
文摘Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.
基金the Talent Fund of Beijing Jiaotong University(Grant No.2024XKRC055).
文摘In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.
基金supported by the China Postdoctoral Science Foundation(No.2022BG011)the Fundamental Research Funds for Central Universities(No.2020CDJ-LHZZ-077)+1 种基金the Natural Science Foundation of Chongqing,China(No.c stc2020jcyj-msxmX0397)the Fundamental Research Funds for Central Universities(No.00007717).
文摘As the Internet of Things advances,gesture recognition emerges as a prominent domain in human-machine interaction(HMI).However,interactive wearables based on conductive hydrogels for individuals with single-arm functionality or disabilities remain underexplored.Here,we devised a wearable one-handed keyboard with gesture recognition,employing machine learning algorithms and hydrogel-based mechanical sensors to boost productivity.PCG(PAM/CMC/rGO)hydrogels are composed of polyacrylamide(PAM),sodium carboxymethyl cellulose(CMC),and reduced graphene oxide(rGO),which function as a strain,pressure sensor,and electrode material.The PAM chains offer the gel’s elasticity by covalent cross-linking,while the biocompatible CMC improves the dispersion of rGO and promotes electromechanical properties.Integrating rGO sheets into the polymer matrix facilitates cross-linking and generates supple-mentary conductive pathways,thereby augmenting the gel system’s elasticity,sensitivity,and durability.Our hydrogel sensors include high sensitivity(gage factor(GF)=8.18,395.6%-551.96%)and superior pressure sensing capabilities(Sensitivity(S)=0.3116 kPa^(-1),0-9.82 kPa).Furthermore,we developed a wearable keyboard with up to 98.13%accuracy using convolutional neural networks and a custom data acquisition system.This study establishes the groundwork for creating multifunctional gel sensors for intelligent machines,wearable devices,and brain-computer interfaces.
基金supported by the Fundamental Research Funds for the Central Universities(xxj022019009)。
文摘Photothermoelectric(PTE)photodetectors with selfpowered and uncooled advantages have attracted much interest due to the wide application prospects in the military and civilian fields.However,traditional PTE photodetectors lack of mechanical flexibility and cannot operate independently without the test instrument.Herein,we present a flexible PTE photodetector capable of dual-mode output,combining electrical and optical signal generation for enhanced functionality.Using solution processing,high-quality MXene thin films are assembled on asymmetric electrodes as the photosensitive layer.The geometrically asymmetric electrode design significantly enhances the responsivity,achieving 0.33 m A W^(-1)under infrared illumination,twice that of the symmetrical configuration.This improvement stems from optimized photothermal conversion and an expanded temperature gradient.The PTE device maintains stable performance after 300 bending cycles,demonstrating excellent flexibility.A new energy conversion pathway has been established by coupling the photothermal conversion of MXene with thermochromic composite materials,leading to a real-time visualization of invisible infrared radiation.Leveraging this functionality,we demonstrate the first human-machine collaborative infrared imaging system,wherein the dual-mode photodetector arrays synchronously generate human-readable pattern and machine-readable pattern.Our study not only provides a new solution for functional integration of flexible photodetectors,but also sets a new benchmark for human-machine collaborative optoelectronics.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金Supported by National Natural Science Foundation of China(Grant Nos.U22A20246,52372382)Hefei Municipal Natural Science Foundation(Grant No.2022008)+1 种基金the Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2023-06)S&T Program of Hebei(Grant No.225676162GH).
文摘In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金supported by the National Natural Science Foundation of China under Grant 62373009.
文摘Indoor scene semantic segmentation is essential for enabling robots to understand and interact with their environments effectively.However,numerous challenges remain unresolved,particularly in single-robot systems,which often struggle with the complexity and variability of indoor scenes.To address these limitations,we introduce a novel multi-robot collaborative framework based on multiplex interactive learning(MPIL)in which each robot specialises in a distinct visual task within a unified multitask architecture.During training,the framework employs task-specific decoders and cross-task feature sharing to enhance collaborative optimisation.At inference time,robots operate independently with optimised models,enabling scalable,asynchronous and efficient deployment in real-world scenarios.Specifically,MPIL employs specially designed modules that integrate RGB and depth data,refine feature representations and facilitate the simultaneous execution of multiple tasks,such as instance segmentation,scene classification and semantic segmentation.By leveraging these modules,distinct agents within multi-robot systems can effectively handle specialised tasks,thereby enhancing the overall system's flexibility and adaptability.This collaborative effort maximises the strengths of each robot,resulting in a more comprehensive understanding of environments.Extensive experiments on two public benchmark datasets demonstrate MPIL's competitive performance compared to state-of-the-art approaches,highlighting the effectiveness and robustness of our multi-robot system in complex indoor environments.
基金National Natural Science Foundation of China,No.42361040。
文摘Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interaction patterns underlying human activities.Nevertheless,the inherent heterogeneity in multimodal migration big data has been ignored.This study conducts an in-depth comparison and quantitative analysis through a comprehensive lens of spatial association.Initially,the intercity interactive networks in China were constructed,utilizing migration data from Baidu and AutoNavi collected during the same time period.Subsequently,the characteristics and spatial structure similarities of the two types of intercity interactive networks were quantitatively assessed and analyzed from overall(network)and local(node)perspectives.Furthermore,the precision of these networks at the local scale is corroborated by constructing an intercity network from mobile phone(MP)data.Results indicate that the intercity interactive networks in China,as delineated by Baidu and AutoNavi migration flows,exhibit a high degree of structure equivalence.The correlation coefficient between these two networks is 0.874.Both networks exhibit a pronounced spatial polarization trend and hierarchical structure.This is evident in their distinct core and peripheral structures,as well as in the varying importance and influence of different nodes within the networks.Nevertheless,there are notable differences worthy of attention.Baidu intercity interactive network exhibits pronounced cross-regional effects,and its high-level interactions are characterized by a“rich-club”phenomenon.The AutoNavi intercity interactive network presents a more significant distance attenuation effect,and the high-level interactions display a gradient distribution pattern.Notably,there exists a substantial correlation between the AutoNavi and MP networks at the local scale,evidenced by a high correlation coefficient of 0.954.Furthermore,the“spatial dislocations”phenomenon was observed within the spatial structures at different levels,extracted from the Baidu and AutoNavi intercity networks.However,the measured results of network spatial structure similarity from three dimensions,namely,node location,node size,and local structure,indicate a relatively high similarity and consistency between the two networks.
文摘This study focuses on the application of dynamic route planning and augmented reality(AR)technology within interactive theme trail platforms.Taking the“Dongpo Travelogue”digital guide mini-program as a case study,it employs empirical analysis to explore its impact on enhancing visitor engagement and cultural identification.Employing a combined quantitative and qualitative methodology,the study analyses the platform’s functional implementation in route planning,cultural narration,interactive games,and their impact on visitor experience.Findings indicate that the integration of dynamic route planning and AR technology significantly enhances visitor engagement and cultural identity,offering novel insights for the digital transformation of the cultural tourism industry.