For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 ...For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of β 0 and σ are shown to be asymptotically normal with the rate of convergence n ?1/2 and the B-spline Huber-Dutter estimator of g 0 achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of β 0 is competitive with its M-estimator without scale parameter and the ordinary least square estimator.展开更多
For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 res...For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 respectively, in which the smoothing B-spline function isused. Under some regular conditions, it is shown that the Huber-Dutter estimators of β_0 and σ areasymptotically normal with convergence rate n^(-1/2) and the B-spline Huber-Dutter estimator of g_0achieves the optimal convergence rate in nonparametric regression. A simulation study demonstratesthat the Huber-Dutter estimator of β_0 is competitive with its M-estimator without scale parameterand the ordinary least square estimator. An example is presented after the simulation study.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in...Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction. The necessary and sufficient conditions for...This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction. The necessary and sufficient conditions for linear estimators to be admissible in classes of the homogeneous and non-homogeneous linear estimators, respectively, are obtained under the quadratic loss function. They are generalizations of some existing results in literature.展开更多
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als...This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.展开更多
Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistic...Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.展开更多
This paper is an extension and generalization of the study carried out by [1] on the estimation of the population ratio (R) of the population means of two variables (y and x) under Simple Random Sampling (SRS) scheme,...This paper is an extension and generalization of the study carried out by [1] on the estimation of the population ratio (R) of the population means of two variables (y and x) under Simple Random Sampling (SRS) scheme, using a variable transformation of the auxiliary variable, x. All the six estimators proposed by [1] are easily identified as special cases of the proposed class of estimators. Asymptotic properties of the proposed class of estimators are derived theoretically and subsequently verified using empirical illustrations. Some of the proposed estimators are found to have relatively large gains in efficiency over the customary ratio estimator, ?for the given data set.展开更多
In this paper, the optimal convergence rates of point estimators have been found under the irregular truncated distribution family, and corresponding Bahadurtype asymptotic efficiencies have been established. It has b...In this paper, the optimal convergence rates of point estimators have been found under the irregular truncated distribution family, and corresponding Bahadurtype asymptotic efficiencies have been established. It has beed justified that commonly used estimators are all efficient in this sense.展开更多
Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of param...Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of parameter and nonparametric part are given by the wavelet smoothing and the synthetic data methods. Under general conditions, the asymptotic normality for the wavelet estimators and the convergence rates for the wavelet estimators of nonparametric components are investigated. A numerical example is given.展开更多
In this paper, we use Monte Carlo simulations to compare parametric estimators of Type 1 Tobit model. In particular, we examine the performance for finite samples of three different estimators of simple Tobit model: t...In this paper, we use Monte Carlo simulations to compare parametric estimators of Type 1 Tobit model. In particular, we examine the performance for finite samples of three different estimators of simple Tobit model: the least squares (LS) estimator, the Heckman (H) estimator and the maximum likelihood (ML) estimator. These three estimators are consistent and asymptotically normal in the case where the density error is specified. However, these properties are sensitive to the situation where the error distribution is not specified. The purpose of this article is to determine properties of the three estimators, namely bias and convergence, by using Monte Carlo simulations.展开更多
Certain distributions do not have a closed-form density, but it is simple to draw samples from them. For such distributions, simulated minimum Hellinger distance (SMHD) estimation appears to be useful. Since the metho...Certain distributions do not have a closed-form density, but it is simple to draw samples from them. For such distributions, simulated minimum Hellinger distance (SMHD) estimation appears to be useful. Since the method is distance-based, it happens to be naturally robust. This paper is a follow-up to a previous paper where the SMHD estimators were only shown to be consistent;this paper establishes their asymptotic normality. For any parametric family of distributions for which all positive integer moments exist, asymptotic properties for the SMHD method indicate that the variance of the SMHD estimators attains the lower bound for simulation-based estimators, which is based on the inverse of the Fisher information matrix, adjusted by a constant that reflects the loss of efficiency due to simulations. All these features suggest that the SMHD method is applicable in many fields such as finance or actuarial science where we often encounter distributions without closed-form density.展开更多
The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model ...The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model fitness. Though previous researches have studied outliers and controlling observations from various perspectives including the use of box plots, normal probability plots, among others, the use of uniform horizontal QQ plot is yet to be explored. This study is, therefore, aimed at applying uniform QQ plots to identifying outliers and possible controlling observations in SEM. The results showed that all the three methods of estimators manifest the ability to identify outliers and possible controlling observations in SEM. It was noted that the Anderson-Rubin estimator of QQ plot showed a more efficient or visual display of spotting outliers and possible controlling observations as compared to the other methods of estimators. Therefore, this paper provides an efficient way identifying outliers as it fragments the data set.展开更多
For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators ...For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility.展开更多
In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Esti...In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters.展开更多
Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates havi...Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates having high variance if the number of predictors is higher than the number of observations and if high multicollinearity exists among the predictor variables. To handle this problem, Elastic Net (ENet) estimator was introduced by combining LASSO and Ridge estimator (RE). The solutions of LASSO and ENet have been obtained using Least Angle Regression (LARS) and LARS-EN algorithms, respectively. In this article, we proposed an alternative algorithm to overcome the issues in LASSO that can be combined LASSO with other exiting biased estimators namely Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator. Further, we examine the performance of the proposed algorithm using a Monte-Carlo simulation study and real-world examples. The results showed that the LARS-rk and LARS-rd algorithms,?which are combined LASSO with r-k class estimator and r-d class estimator,?outperformed other algorithms under the moderated and severe multicollinearity.展开更多
Variance is one of themost important measures of descriptive statistics and commonly used for statistical analysis.The traditional second-order central moment based variance estimation is a widely utilized methodology...Variance is one of themost important measures of descriptive statistics and commonly used for statistical analysis.The traditional second-order central moment based variance estimation is a widely utilized methodology.However,traditional variance estimator is highly affected in the presence of extreme values.So this paper initially,proposes two classes of calibration estimators based on an adaptation of the estimators recently proposed by Koyuncu and then presents a new class of L-Moments based calibration variance estimators utilizing L-Moments characteristics(L-location,Lscale,L-CV)and auxiliary information.It is demonstrated that the proposed L-Moments based calibration variance estimators are more efficient than adapted ones.Artificial data is considered for assessing the performance of the proposed estimators.We also demonstrated an application related to apple fruit for purposes of the article.Using artificial and real data sets,percentage relative efficiency(PRE)of the proposed class of estimators with respect to adapted ones are calculated.The PRE results indicate to the superiority of the proposed class over adapted ones in the presence of extreme values.In this manner,the proposed class of estimators could be applied over an expansive range of survey sampling whenever auxiliary information is available in the presence of extreme values.展开更多
Point cloud registration is a fundamental task in both remote sensing,photogrammetry,and computer vision,which is to align multiple point clouds to the same coordinate frame.Especially in LiDAR odometry,by conducting ...Point cloud registration is a fundamental task in both remote sensing,photogrammetry,and computer vision,which is to align multiple point clouds to the same coordinate frame.Especially in LiDAR odometry,by conducting the transformation between two adjacent scans,the pose of the platform can be estimated.To be specific,the goal is to recover the relative six-degree-of-freedom(6 DoF)pose between the source point cloud and the target point cloud.In this paper,we explore the use of robust estimators in the phase correlation when registering two point clouds,enabling a 6 DoF pose estimation between point clouds in a sub-voxel accuracy.The estimator is a rule for calculating an estimate of a given quantity based on observed data.A robust estimator is an estimation rule that is insensitive to nonnormality and can estimate parameters of a given objective function from noisy observations.The proposed registration method is theoretically insensitive to noise and outliers than correspondence-based methods.Three core steps are involved in the method:transforming point clouds from the spatial domain to the frequency domain,decoupling of rotations and translations,and using robust estimators to estimate phase shifts.Since the estimation of transformation parameters lies in the calculation of phase shifts,robust estimators play a vital role in shift estimation accuracy.In this paper,we have tested the performance of six different robust estimators and provide comparisons and discussions on the contributions of robust estimators in the 3D phase correlation.Different point clouds from two urban scenarios and one indoor scene are tested.Results validate the proposed method can reach performance that predominant rotation and translation errors reaching less than 0.5°and 0.5 m,respectively.Moreover,the performance of various tested robust estimators is compared and discussed.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 10671106, 10771017)
文摘For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of β 0 and σ are shown to be asymptotically normal with the rate of convergence n ?1/2 and the B-spline Huber-Dutter estimator of g 0 achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of β 0 is competitive with its M-estimator without scale parameter and the ordinary least square estimator.
基金Supported by The National Natural Science Foundation of China (No. 10231030 )Beijing Normal University Youth Foundation (No. 104951).
文摘For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 respectively, in which the smoothing B-spline function isused. Under some regular conditions, it is shown that the Huber-Dutter estimators of β_0 and σ areasymptotically normal with convergence rate n^(-1/2) and the B-spline Huber-Dutter estimator of g_0achieves the optimal convergence rate in nonparametric regression. A simulation study demonstratesthat the Huber-Dutter estimator of β_0 is competitive with its M-estimator without scale parameterand the ordinary least square estimator. An example is presented after the simulation study.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金Supported by the State Key Laboratory of Acoustics and Marine Information Chinese Academy of Sciences(SKL A202507).
文摘Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
基金Supported by Pre-Study Program of NBRP (2003CCA02400)NSFC (10671007)NSFC (60772036),China
文摘This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction. The necessary and sufficient conditions for linear estimators to be admissible in classes of the homogeneous and non-homogeneous linear estimators, respectively, are obtained under the quadratic loss function. They are generalizations of some existing results in literature.
文摘This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2009AA011204)
文摘Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.
文摘This paper is an extension and generalization of the study carried out by [1] on the estimation of the population ratio (R) of the population means of two variables (y and x) under Simple Random Sampling (SRS) scheme, using a variable transformation of the auxiliary variable, x. All the six estimators proposed by [1] are easily identified as special cases of the proposed class of estimators. Asymptotic properties of the proposed class of estimators are derived theoretically and subsequently verified using empirical illustrations. Some of the proposed estimators are found to have relatively large gains in efficiency over the customary ratio estimator, ?for the given data set.
文摘In this paper, the optimal convergence rates of point estimators have been found under the irregular truncated distribution family, and corresponding Bahadurtype asymptotic efficiencies have been established. It has beed justified that commonly used estimators are all efficient in this sense.
基金Supported by the National Natural Science Foundation of China (11071022)the Key Project of Hubei Provincial Department of Education (D20092207)
文摘Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of parameter and nonparametric part are given by the wavelet smoothing and the synthetic data methods. Under general conditions, the asymptotic normality for the wavelet estimators and the convergence rates for the wavelet estimators of nonparametric components are investigated. A numerical example is given.
文摘In this paper, we use Monte Carlo simulations to compare parametric estimators of Type 1 Tobit model. In particular, we examine the performance for finite samples of three different estimators of simple Tobit model: the least squares (LS) estimator, the Heckman (H) estimator and the maximum likelihood (ML) estimator. These three estimators are consistent and asymptotically normal in the case where the density error is specified. However, these properties are sensitive to the situation where the error distribution is not specified. The purpose of this article is to determine properties of the three estimators, namely bias and convergence, by using Monte Carlo simulations.
文摘Certain distributions do not have a closed-form density, but it is simple to draw samples from them. For such distributions, simulated minimum Hellinger distance (SMHD) estimation appears to be useful. Since the method is distance-based, it happens to be naturally robust. This paper is a follow-up to a previous paper where the SMHD estimators were only shown to be consistent;this paper establishes their asymptotic normality. For any parametric family of distributions for which all positive integer moments exist, asymptotic properties for the SMHD method indicate that the variance of the SMHD estimators attains the lower bound for simulation-based estimators, which is based on the inverse of the Fisher information matrix, adjusted by a constant that reflects the loss of efficiency due to simulations. All these features suggest that the SMHD method is applicable in many fields such as finance or actuarial science where we often encounter distributions without closed-form density.
文摘The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model fitness. Though previous researches have studied outliers and controlling observations from various perspectives including the use of box plots, normal probability plots, among others, the use of uniform horizontal QQ plot is yet to be explored. This study is, therefore, aimed at applying uniform QQ plots to identifying outliers and possible controlling observations in SEM. The results showed that all the three methods of estimators manifest the ability to identify outliers and possible controlling observations in SEM. It was noted that the Anderson-Rubin estimator of QQ plot showed a more efficient or visual display of spotting outliers and possible controlling observations as compared to the other methods of estimators. Therefore, this paper provides an efficient way identifying outliers as it fragments the data set.
文摘For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility.
文摘In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters.
文摘Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates having high variance if the number of predictors is higher than the number of observations and if high multicollinearity exists among the predictor variables. To handle this problem, Elastic Net (ENet) estimator was introduced by combining LASSO and Ridge estimator (RE). The solutions of LASSO and ENet have been obtained using Least Angle Regression (LARS) and LARS-EN algorithms, respectively. In this article, we proposed an alternative algorithm to overcome the issues in LASSO that can be combined LASSO with other exiting biased estimators namely Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator. Further, we examine the performance of the proposed algorithm using a Monte-Carlo simulation study and real-world examples. The results showed that the LARS-rk and LARS-rd algorithms,?which are combined LASSO with r-k class estimator and r-d class estimator,?outperformed other algorithms under the moderated and severe multicollinearity.
基金The authors are grateful to the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for funding this study through the research groups program under project number R.G.P.2/67/41.Ibrahim Mufrah Almanjahie received the grant.
文摘Variance is one of themost important measures of descriptive statistics and commonly used for statistical analysis.The traditional second-order central moment based variance estimation is a widely utilized methodology.However,traditional variance estimator is highly affected in the presence of extreme values.So this paper initially,proposes two classes of calibration estimators based on an adaptation of the estimators recently proposed by Koyuncu and then presents a new class of L-Moments based calibration variance estimators utilizing L-Moments characteristics(L-location,Lscale,L-CV)and auxiliary information.It is demonstrated that the proposed L-Moments based calibration variance estimators are more efficient than adapted ones.Artificial data is considered for assessing the performance of the proposed estimators.We also demonstrated an application related to apple fruit for purposes of the article.Using artificial and real data sets,percentage relative efficiency(PRE)of the proposed class of estimators with respect to adapted ones are calculated.The PRE results indicate to the superiority of the proposed class over adapted ones in the presence of extreme values.In this manner,the proposed class of estimators could be applied over an expansive range of survey sampling whenever auxiliary information is available in the presence of extreme values.
基金National Key Research and Development Program of China under Project(No.2018YFB0505400)National Natural Science Foundation of China(No.41631178)。
文摘Point cloud registration is a fundamental task in both remote sensing,photogrammetry,and computer vision,which is to align multiple point clouds to the same coordinate frame.Especially in LiDAR odometry,by conducting the transformation between two adjacent scans,the pose of the platform can be estimated.To be specific,the goal is to recover the relative six-degree-of-freedom(6 DoF)pose between the source point cloud and the target point cloud.In this paper,we explore the use of robust estimators in the phase correlation when registering two point clouds,enabling a 6 DoF pose estimation between point clouds in a sub-voxel accuracy.The estimator is a rule for calculating an estimate of a given quantity based on observed data.A robust estimator is an estimation rule that is insensitive to nonnormality and can estimate parameters of a given objective function from noisy observations.The proposed registration method is theoretically insensitive to noise and outliers than correspondence-based methods.Three core steps are involved in the method:transforming point clouds from the spatial domain to the frequency domain,decoupling of rotations and translations,and using robust estimators to estimate phase shifts.Since the estimation of transformation parameters lies in the calculation of phase shifts,robust estimators play a vital role in shift estimation accuracy.In this paper,we have tested the performance of six different robust estimators and provide comparisons and discussions on the contributions of robust estimators in the 3D phase correlation.Different point clouds from two urban scenarios and one indoor scene are tested.Results validate the proposed method can reach performance that predominant rotation and translation errors reaching less than 0.5°and 0.5 m,respectively.Moreover,the performance of various tested robust estimators is compared and discussed.