The classical iterative methods for finding roots of nonlinear equations,like the Newton method,Halley method,and Chebyshev method,have been modified previously to achieve optimal convergence order.However,the Househo...The classical iterative methods for finding roots of nonlinear equations,like the Newton method,Halley method,and Chebyshev method,have been modified previously to achieve optimal convergence order.However,the Householder method has so far not been modified to become optimal.In this study,we shall develop two new optimal Newton-Householder methods without memory.The key idea in the development of the new methods is the avoidance of the need to evaluate the second derivative.The methods fulfill the Kung-Traub conjecture by achieving optimal convergence order four with three functional evaluations and order eight with four functional evaluations.The efficiency indices of the methods show that methods perform better than the classical Householder’s method.With the aid of convergence analysis and numerical analysis,the efficiency of the schemes formulated in this paper has been demonstrated.The dynamical analysis exhibits the stability of the schemes in solving nonlinear equations.Some comparisons with other optimal methods have been conducted to verify the effectiveness,convergence speed,and capability of the suggested methods.展开更多
For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describ...For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.展开更多
基金This research was supported by Universiti Kebangsaan Malaysia under research grant GUP-2019-033.
文摘The classical iterative methods for finding roots of nonlinear equations,like the Newton method,Halley method,and Chebyshev method,have been modified previously to achieve optimal convergence order.However,the Householder method has so far not been modified to become optimal.In this study,we shall develop two new optimal Newton-Householder methods without memory.The key idea in the development of the new methods is the avoidance of the need to evaluate the second derivative.The methods fulfill the Kung-Traub conjecture by achieving optimal convergence order four with three functional evaluations and order eight with four functional evaluations.The efficiency indices of the methods show that methods perform better than the classical Householder’s method.With the aid of convergence analysis and numerical analysis,the efficiency of the schemes formulated in this paper has been demonstrated.The dynamical analysis exhibits the stability of the schemes in solving nonlinear equations.Some comparisons with other optimal methods have been conducted to verify the effectiveness,convergence speed,and capability of the suggested methods.
文摘For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.