Pressure activity data as an important index of gastrointestinal (GI) motility can be obtained from the wireless radiotelemetry capsule. The Hilbert-Huang transform (HHT) method, which is more effective to process...Pressure activity data as an important index of gastrointestinal (GI) motility can be obtained from the wireless radiotelemetry capsule. The Hilbert-Huang transform (HHT) method, which is more effective to process non-stationary signal, is proposed to identify the characteristics of GI motility. We decompose the pressure activity data into intrinsic mode functions (IMFs), calculate the Hi/bert marginal spectrum and attain the peristalsis characteristics of GI tract. The IMFs represent the peristalses modes of GI tract activity embedded in the pressure data. The time-varying characteristic of the method suggests that the HHT is suitable to accommodate other non-stationary biomedical data analysis.展开更多
The dispersion and multiple modes characteristics which exist in the propagation of Lamb waves (LW) in metal plates make it extremely hard to analyze and recognize the detection echo signals of defects. As a newly dev...The dispersion and multiple modes characteristics which exist in the propagation of Lamb waves (LW) in metal plates make it extremely hard to analyze and recognize the detection echo signals of defects. As a newly developed time-frequency analysis method in recent years, Hilbert-Huang transform (HHT) is one of the powerful tools to analyze non-stationary signals. The experimental LW detecting system for single aluminum plate is setup in this work, and the LW detecting signals are analyzed by HHT. The overlapped LW detecting signals of different modes are recognized by the means of extracting flight time of intrinsic mode functions (IMFs) after Hilbert transform (HT). The experiment results, agreeing well with the theoretical analysis, indicate that the HHT method can clearly recognize overlapped LW detecting signals of different modes in metal plates, but could hardly recognize that of the same mode. HHT can be an effective method to recognize LW detecting signals of different modes in metal plates.展开更多
Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of Europ...Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.展开更多
In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This s...In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This semi-analytic method has the advantage of overcoming the obstacle of the hardest nonlinear terms and is used to explain the origin of the bright and dark soliton solutions through the Schrödinger equation in its non-local form and the Radhakrishnan-Kundu-Laksmannan (RKL) equation. Numerical examples demonstrate the effectiveness of this method.展开更多
In the context of the digital economy,digital transformation of enterprises has become a current hot topic.This study focuses on Hualing Steel to explore how enterprises can achieve high-quality development through di...In the context of the digital economy,digital transformation of enterprises has become a current hot topic.This study focuses on Hualing Steel to explore how enterprises can achieve high-quality development through digital transformation.The paper employs indicators of efficiency,innovation,and green development,utilizing the entropy and TOPSIS methods to quantitatively assess transformation performance from 2013 to 2023.The analysis yields three key conclusions:(1)Digital transformation has yielded significant outcomes,with the highest comprehensive performance observed in 2021,coinciding with the launch of the 5G smart factory;(2)A structural characteristic of"efficiency improvement leading,with innovation-driven development lagging"is identified;(3)Recommendations are made for deepening the application of digital technologies,optimizing enterprise operation management systems,enhancing innovation-driven development,and improving talent development systems.These findings provide a theoretical framework and practical model for the transformation and upgrading of traditional manufacturing industries.展开更多
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva...In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.展开更多
A phase-field model integrated with the thermodynamic databases was constructed to investigate the impact of Ni content on the precipitation kinetics and phase transformation of the Cu-rich phase in Fe-Cu-Ni alloy at ...A phase-field model integrated with the thermodynamic databases was constructed to investigate the impact of Ni content on the precipitation kinetics and phase transformation of the Cu-rich phase in Fe-Cu-Ni alloy at 773 K.The results demonstrated that the Cu core-Ni shell structures form via the decomposition of Cu-Ni co-clusters,which is consistent with previous experimental results.As the Ni content increases,both the volume fraction and number density of Cu-rich precipitates increase,while their size decreases.With the increase in Ni content,the transformation from a Cu to 9R Cu is accelerated,which is the opposite to the result of increasing Mn content.Magnetic energy can increase the nucleation rate of the Cu-rich phase,but it does not affect the phase transformation driving force required for its crystal structure transformation.展开更多
With the increasing accuracy requirements of satellite magnetic detection missions,reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology.Traditional satellite magnetic simula...With the increasing accuracy requirements of satellite magnetic detection missions,reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology.Traditional satellite magnetic simulation methods have matured in static magnetic dipole simulations,but there is still significant room for optimization in the simulation and computation of low-frequency magnetic dipole models.This study employs the Gauss-Newton method and Fourier transform techniques for modeling and simulating low-frequency magnetic dipoles.Compared to the traditional particle swarm optimization(PSO)algorithm,this method achieves significant improvements,with errors reaching the order of10^(-13)%under noise-free conditions and maintaining an error level of less than 0.5%under 10%noise.Additionally,the use of Fourier transform and the Gauss-Newton method enables high-precision magnetic field frequency identification and rapid computation of the dipole position and magnetic moment,greatly enhancing the computational efficiency and accuracy of the model.展开更多
The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the ...The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.展开更多
The precise acquisition of the quality characteristic parameters of large aircraft directly affects its performance characteristics.For large aircrafts such as missiles and rockets with internal fillings,traditional m...The precise acquisition of the quality characteristic parameters of large aircraft directly affects its performance characteristics.For large aircrafts such as missiles and rockets with internal fillings,traditional measurement methods involving large-angle tilting or rotation may pose safety risks.In light of the characteristics of large aircraft and in combination with existing measurement methods,we design a mass and centroid measurement method based on four-point support and small-angle tilting,and develop a set of mass and centroid testing system.This method obtains the intersection point of the gravity action line in the product coordinate system through coordinate transformation in two postures,thereby obtaining the three-dimensional centroid of the aircraft.We first elaborate on the principle of this method in detail,then introduce the composition of the equipment,and analyze the structural stress of key components.Finally,experimental verification and uncertainty analysis are carried out.Experimental verification shows that the maximum deviation of the mass measurement accuracy is less than 0.02%,the centroid measurement accuracy in the X direction is±0.15 mm,in the Y direction it is±0.21 mm,and in the Z direction it is±0.19 mm.展开更多
Reducing the size of the lamellar structures and increasing the number of twin structures are both effective strategies for enhancing the ductility and fracture toughness ofγ-TiAl alloys.Hot isostatic pressing combin...Reducing the size of the lamellar structures and increasing the number of twin structures are both effective strategies for enhancing the ductility and fracture toughness ofγ-TiAl alloys.Hot isostatic pressing combined with heat treatment is an promising method to optimize the microstructure of TiAl alloys and improve their mechanical properties.However,systematic investigations into the microstructural evolution under high temperature pressure/external stress are limited.In this study,by integrating phase field simulations and CALPHAD thermodynamic database,a unique microstructural response to external stress during aging process is revealed.With the increase of external stress,the size of the lamellar structure initially decreases but then increases,while the number of twin structures initially rises but then decreases,showing nonlinear relationships.An increase in external stress shifts the free energy curves,altering the position of c0(the intersection position between free energies ofα_(2)andγ),which leads to a change in the nucleation mechanism from classical nucleation to pseudo-spinodal decomposition and influences the final microstructure ofγprecipitates.Further simulations indicate a linear correlation between optimal external stress and varying Al content.A deeper analysis indicates that the observed variations in the size and twin structures can be attributed to the interplay among the growth rate of existing variants,the competitive nucleation rates of twinned variants and the redistribution of composition under different external stresses.Our findings provide new insights into optimizing microstructures by pressure/external stress in precipitation processes.展开更多
This article deals with the methods of finding partial discharge(PD)location in power transformers using ultra high frequency(UHF)measurements.The UHF technique utilises two methods to find the PD location,that is,the...This article deals with the methods of finding partial discharge(PD)location in power transformers using ultra high frequency(UHF)measurements.The UHF technique utilises two methods to find the PD location,that is,the shortest path method and hyperbolic method.The shortest path method works based on the comparison of the measured data and the ones in the database.In the hyperbolic method,a hyperbolic equation is obtained between each two element subset of sensors.The coordinate that best fits all equations is known as the PD location,and can be obtained in three different ways,that is,iterative algorithms,the Fang method and Chan method.The convergence of iterative algorithms is limited by poor initial estimate,overshoot,mitigation of non-convergence etc.The Fang and Chan methods are two closed-form solutions that are used in the communication system to find the radiation source location.This article explains how to use these two methods to obtain the PD coordinate inside the power transformer.These two methods can find exactly the coordinate that best fits all hyperbolic equations.At the end of this article,several tests are carried out through CST software and the PD locations is estimated by all presented methods.The simulation results show how the Fang and Chan methods can overcome the limitations of the iterative method.展开更多
The hot spot temperature of a transformer is one of the critical indicators reflecting its operating status.Accurate and fast calculation of hot spot temperature is significant for the online monitoring of transformer...The hot spot temperature of a transformer is one of the critical indicators reflecting its operating status.Accurate and fast calculation of hot spot temperature is significant for the online monitoring of transformers.Considering the low computational efficiency of the transformer’s numerical full model(FM),this paper presents a model simplification method based on the equivalent thermal parameters of windings to expedite hot spot temperature computation.Initially,the representative volume element(RVE)reflecting the periodic structure of windings is selected to formulate a reduced model(RM)for the transformer.Subsequently,to achieve equivalence between the RM and the FM,the equivalent thermal parameters of the RVE are calculated,containing the equivalent thermal conductivity(ETC),the equivalent density(ED),and the equivalent specific heat capacity(ESHC).Finally,the validity of the RM is verified by the temperature rise test.The results show that,compared with the tested data,the maximum error of the hot spot temperature calculated by the RM is 2.56 K,demonstrating the accuracy of the hot spot temperature calculation by the RM.Compared with the FM,the computing time of the proposed RM is reduced to 1/189,which significantly improves the computational efficiency.展开更多
基金the National High.Technology Research and Development Programme of China(2004AA404013)
文摘Pressure activity data as an important index of gastrointestinal (GI) motility can be obtained from the wireless radiotelemetry capsule. The Hilbert-Huang transform (HHT) method, which is more effective to process non-stationary signal, is proposed to identify the characteristics of GI motility. We decompose the pressure activity data into intrinsic mode functions (IMFs), calculate the Hi/bert marginal spectrum and attain the peristalsis characteristics of GI tract. The IMFs represent the peristalses modes of GI tract activity embedded in the pressure data. The time-varying characteristic of the method suggests that the HHT is suitable to accommodate other non-stationary biomedical data analysis.
文摘The dispersion and multiple modes characteristics which exist in the propagation of Lamb waves (LW) in metal plates make it extremely hard to analyze and recognize the detection echo signals of defects. As a newly developed time-frequency analysis method in recent years, Hilbert-Huang transform (HHT) is one of the powerful tools to analyze non-stationary signals. The experimental LW detecting system for single aluminum plate is setup in this work, and the LW detecting signals are analyzed by HHT. The overlapped LW detecting signals of different modes are recognized by the means of extracting flight time of intrinsic mode functions (IMFs) after Hilbert transform (HT). The experiment results, agreeing well with the theoretical analysis, indicate that the HHT method can clearly recognize overlapped LW detecting signals of different modes in metal plates, but could hardly recognize that of the same mode. HHT can be an effective method to recognize LW detecting signals of different modes in metal plates.
文摘Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.
文摘In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This semi-analytic method has the advantage of overcoming the obstacle of the hardest nonlinear terms and is used to explain the origin of the bright and dark soliton solutions through the Schrödinger equation in its non-local form and the Radhakrishnan-Kundu-Laksmannan (RKL) equation. Numerical examples demonstrate the effectiveness of this method.
文摘In the context of the digital economy,digital transformation of enterprises has become a current hot topic.This study focuses on Hualing Steel to explore how enterprises can achieve high-quality development through digital transformation.The paper employs indicators of efficiency,innovation,and green development,utilizing the entropy and TOPSIS methods to quantitatively assess transformation performance from 2013 to 2023.The analysis yields three key conclusions:(1)Digital transformation has yielded significant outcomes,with the highest comprehensive performance observed in 2021,coinciding with the launch of the 5G smart factory;(2)A structural characteristic of"efficiency improvement leading,with innovation-driven development lagging"is identified;(3)Recommendations are made for deepening the application of digital technologies,optimizing enterprise operation management systems,enhancing innovation-driven development,and improving talent development systems.These findings provide a theoretical framework and practical model for the transformation and upgrading of traditional manufacturing industries.
基金extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/174/46.
文摘In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.
基金supported by the National Natural Science Foundation of China(Grant No.51871086).
文摘A phase-field model integrated with the thermodynamic databases was constructed to investigate the impact of Ni content on the precipitation kinetics and phase transformation of the Cu-rich phase in Fe-Cu-Ni alloy at 773 K.The results demonstrated that the Cu core-Ni shell structures form via the decomposition of Cu-Ni co-clusters,which is consistent with previous experimental results.As the Ni content increases,both the volume fraction and number density of Cu-rich precipitates increase,while their size decreases.With the increase in Ni content,the transformation from a Cu to 9R Cu is accelerated,which is the opposite to the result of increasing Mn content.Magnetic energy can increase the nucleation rate of the Cu-rich phase,but it does not affect the phase transformation driving force required for its crystal structure transformation.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2206003)。
文摘With the increasing accuracy requirements of satellite magnetic detection missions,reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology.Traditional satellite magnetic simulation methods have matured in static magnetic dipole simulations,but there is still significant room for optimization in the simulation and computation of low-frequency magnetic dipole models.This study employs the Gauss-Newton method and Fourier transform techniques for modeling and simulating low-frequency magnetic dipoles.Compared to the traditional particle swarm optimization(PSO)algorithm,this method achieves significant improvements,with errors reaching the order of10^(-13)%under noise-free conditions and maintaining an error level of less than 0.5%under 10%noise.Additionally,the use of Fourier transform and the Gauss-Newton method enables high-precision magnetic field frequency identification and rapid computation of the dipole position and magnetic moment,greatly enhancing the computational efficiency and accuracy of the model.
基金the Yunnan Fundamental Research Projects(No.202301AT070452)the National Natural Science Foundation of China(No.61861023)。
文摘The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.
基金supported by National Natural Science Foundation of China-Youth Program(No.62303420)。
文摘The precise acquisition of the quality characteristic parameters of large aircraft directly affects its performance characteristics.For large aircrafts such as missiles and rockets with internal fillings,traditional measurement methods involving large-angle tilting or rotation may pose safety risks.In light of the characteristics of large aircraft and in combination with existing measurement methods,we design a mass and centroid measurement method based on four-point support and small-angle tilting,and develop a set of mass and centroid testing system.This method obtains the intersection point of the gravity action line in the product coordinate system through coordinate transformation in two postures,thereby obtaining the three-dimensional centroid of the aircraft.We first elaborate on the principle of this method in detail,then introduce the composition of the equipment,and analyze the structural stress of key components.Finally,experimental verification and uncertainty analysis are carried out.Experimental verification shows that the maximum deviation of the mass measurement accuracy is less than 0.02%,the centroid measurement accuracy in the X direction is±0.15 mm,in the Y direction it is±0.21 mm,and in the Z direction it is±0.19 mm.
基金supported by the National Key Research and Development Program of China(No.2021YFB3702603)the Outstanding Youth Fund of Shaanxi Province(No.2024JC-JCQN-45)+3 种基金the Scientist+Engineer Teams in Shaanxi’s Qin Chuangyuan Initiative(No.2023KXJ-183)the National Natural Science Foundation of China(No.52171012)111 Project(No.BP2018008),the GHfundA(No.202302019461)“H2”High-Performance Cluster.
文摘Reducing the size of the lamellar structures and increasing the number of twin structures are both effective strategies for enhancing the ductility and fracture toughness ofγ-TiAl alloys.Hot isostatic pressing combined with heat treatment is an promising method to optimize the microstructure of TiAl alloys and improve their mechanical properties.However,systematic investigations into the microstructural evolution under high temperature pressure/external stress are limited.In this study,by integrating phase field simulations and CALPHAD thermodynamic database,a unique microstructural response to external stress during aging process is revealed.With the increase of external stress,the size of the lamellar structure initially decreases but then increases,while the number of twin structures initially rises but then decreases,showing nonlinear relationships.An increase in external stress shifts the free energy curves,altering the position of c0(the intersection position between free energies ofα_(2)andγ),which leads to a change in the nucleation mechanism from classical nucleation to pseudo-spinodal decomposition and influences the final microstructure ofγprecipitates.Further simulations indicate a linear correlation between optimal external stress and varying Al content.A deeper analysis indicates that the observed variations in the size and twin structures can be attributed to the interplay among the growth rate of existing variants,the competitive nucleation rates of twinned variants and the redistribution of composition under different external stresses.Our findings provide new insights into optimizing microstructures by pressure/external stress in precipitation processes.
文摘This article deals with the methods of finding partial discharge(PD)location in power transformers using ultra high frequency(UHF)measurements.The UHF technique utilises two methods to find the PD location,that is,the shortest path method and hyperbolic method.The shortest path method works based on the comparison of the measured data and the ones in the database.In the hyperbolic method,a hyperbolic equation is obtained between each two element subset of sensors.The coordinate that best fits all equations is known as the PD location,and can be obtained in three different ways,that is,iterative algorithms,the Fang method and Chan method.The convergence of iterative algorithms is limited by poor initial estimate,overshoot,mitigation of non-convergence etc.The Fang and Chan methods are two closed-form solutions that are used in the communication system to find the radiation source location.This article explains how to use these two methods to obtain the PD coordinate inside the power transformer.These two methods can find exactly the coordinate that best fits all hyperbolic equations.At the end of this article,several tests are carried out through CST software and the PD locations is estimated by all presented methods.The simulation results show how the Fang and Chan methods can overcome the limitations of the iterative method.
基金supported by Hubei Technology Innovation Center for Smart Hydropower(SDCXZX-JJ-2023-03).
文摘The hot spot temperature of a transformer is one of the critical indicators reflecting its operating status.Accurate and fast calculation of hot spot temperature is significant for the online monitoring of transformers.Considering the low computational efficiency of the transformer’s numerical full model(FM),this paper presents a model simplification method based on the equivalent thermal parameters of windings to expedite hot spot temperature computation.Initially,the representative volume element(RVE)reflecting the periodic structure of windings is selected to formulate a reduced model(RM)for the transformer.Subsequently,to achieve equivalence between the RM and the FM,the equivalent thermal parameters of the RVE are calculated,containing the equivalent thermal conductivity(ETC),the equivalent density(ED),and the equivalent specific heat capacity(ESHC).Finally,the validity of the RM is verified by the temperature rise test.The results show that,compared with the tested data,the maximum error of the hot spot temperature calculated by the RM is 2.56 K,demonstrating the accuracy of the hot spot temperature calculation by the RM.Compared with the FM,the computing time of the proposed RM is reduced to 1/189,which significantly improves the computational efficiency.