Garment manufacturing requires a large number of resources such as energy,water,materials,and chemicals.Consequently,it creates a significant environmental footprint and waste pollution.Therefore,advanced apparel manu...Garment manufacturing requires a large number of resources such as energy,water,materials,and chemicals.Consequently,it creates a significant environmental footprint and waste pollution.Therefore,advanced apparel manufacturing develops energy-efficient and high-speed processes.They include ICT-based systems,computer-aided programs,fast digital printing,and robotic devices.展开更多
一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家...一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。展开更多
Numerical and experimental investigation on wave dynamic processes induced by high-speed trains entering railway tunnels are presented. Experiments were conducted by using a 1:250 scaled train-tunnel simulator. Numeri...Numerical and experimental investigation on wave dynamic processes induced by high-speed trains entering railway tunnels are presented. Experiments were conducted by using a 1:250 scaled train-tunnel simulator. Numerical simulations were carried out by solving the axisymmetric Euler equations with the dispersion-controlled scheme implemented with moving boundary conditions. Pressure histories at various positions inside the train-tunnel simulator at different distance measured from the entrance of the simulator are recorded both numerically and experimentally, and then compared with each other for two train speeds. After the validation of nonlinear wave phenomena, detailed numerical simulations were then conducted to account for the generation of compression waves near the entrance, the propagation of these waves along the train tunnel, and their gradual development into a weak shock wave. Four wave dynamic processes observed are interpreted by combining numerical results with experiments. They are: high-speed trains moving over a free terrain before entering railway tunnels; the abrupt-entering of high-speed trains into railway tunnels; the abrupt-entering of the tail of high-speed trains into railway tunnels; and the interaction of compression and expansion waves ahead of high-speed trains. The effects of train-tunnel configuration, such as the train length and the train-tunnel blockage ratio, on these wave processes have been investigated as well.展开更多
This study compares the microstructural evolution,dynamic recrystallization(DRX)behavior,tensile properties,and age-hardenability between the newly developed high-speed-extrudable BA56 alloy and those of the widely re...This study compares the microstructural evolution,dynamic recrystallization(DRX)behavior,tensile properties,and age-hardenability between the newly developed high-speed-extrudable BA56 alloy and those of the widely recognized AZ31 alloy in industry.Unlike the AZ31 alloy,which retains partially unrecrystallized grains,the high-speed-extruded BA56 alloy demonstrates a coarser but entirely recrystallized and more homogeneous microstructure.The fine-grained structure and abundant Mg_(3)Bi_(2) particles in the BA56 extrusion billet significantly enhance its DRX behavior,thus enabling rapid and complete recrystallization during extrusion.The BA56 alloy contains band-like fragmented Mg_(3)Bi_(2) particles and numerous fine Mg_(3)Bi_(2) particles distributed throughout the material,in contrast to the sparse Al_(8)Mn_(5) particles in the AZ31 alloy.These features contribute to superior mechanical properties of the BA56 alloy,which achieves tensile yield and ultimate tensile strengths of 205 and 292 MPa,respectively,compared to 196 and 270 MPa for the AZ31 alloy.The superior strength of the BA56 alloy,even with its coarser grain size,can be explained by its elevated Hall-Petch constant and the strengthening contribution from the fine Mg_(3)Bi_(2) particles.Additionally,the BA56 alloy demonstrates significant age-hardenability,achieving a 22%enhancement in hardness following T5 aging,attributed to the precipitation of nanoscale Mg_(3)Bi_(2) and Mg_(17)Al_(12) phases.By contrast,the AZ31 alloy shows minimal hardening due to the absence of precipitate formation during aging.These findings suggest that the BA56 alloy is a promising candidate for the production of extruded Mg components requiring a combination of high productivity,superior mechanical performance,and wide-ranging process adaptability.展开更多
The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this pape...The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.展开更多
The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport ...The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport industry must innovate in key technologies to ensure high-quality transmissions for passengers and railway operations.These systems must function effectively under high mobility conditions while prioritizing safety,ecofriendliness,comfort,transparency,predictability,and reliability.On the other hand,the proposal of 6 G wireless technology introduces new possibilities for innovation in communication technologies,which may truly realize the current vision of HSR.Therefore,this article gives a review of the current advanced 6 G wireless communication technologies for HSR,including random access and switching,channel estimation and beamforming,integrated sensing and communication,and edge computing.The main application scenarios of these technologies are reviewed,as well as their current research status and challenges,followed by an outlook on future development directions.展开更多
The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process base...The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu's method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ≥0.2 cm s-1. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s-1. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80–90 ms when dipping speed is from 1.6 to 4.0 cm s-1. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ≥55 ms.展开更多
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR).After the advent of ...In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR).After the advent of high-speed milling(HSM)pro cess,lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters.It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism.In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN)so as to have the most effective knowledge-base for given set of data.Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters.A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed.After training process,raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules.The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.展开更多
Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strai...Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strain required for the nucleation of adiabatic shear band(ASB).The deformation results of cylindrical and hat-shaped samples show that the critical strain required for ASB nucleation corresponds to the strain at the first local minimum after peak stress on the first derivative curve of true stress−true strain.The method of determining the critical strain for the nucleation of ASB through the first derivative of the flow stress curve is named the first derivative method.The proposed first derivative method is not only applicable to the 7003 aluminum alloy,but also to other metal materials,such as commercial purity titanium,WY-100 steel,and AM80 magnesium alloy.This proves that it has strong universality.展开更多
The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting spee...The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting speed,feed per tooth,cutting tool geometry and cooling strategy are demonstrated.It has been found that the surface quality of machined grooves can be improved by increasing the cutting speed.However,cryogenic cooling with CO_2 exhibits no significant improvement of surface quality.Microstructure and hardness investigations revealed similar microstructure and hardness variations near the machined groove walls for both utilized tool geometries.Therefore,cryogenic cooling can decrease more far-ranging hardness reductions due to high process temperatures,especially in the UFG regions of the machined parts,whilst it cannot prevent the drop in hardness directly at the groove walls.展开更多
Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the...Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.展开更多
Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit superior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining...Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit superior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point diamond turning(SPDT),was developed to produce effectively the GNS layer on the hexagonal close-packed(HCP)structural Mg alloy.The high-resolution transmission electron microscopy observations and atomistic molecular dynamics simulations were mainly performed to atomic-scale dissect the grain refinement process and corresponding plastic deformation mechanisms of the GNS layer.It was found that the grain refinement process for the formation of the GNS Mg alloy layer consists of elongated coarse grains,lamellar fine grains with deformation-induced-tension twins and contraction twins,ultrafine grains,and nanograins with the grain size of~70 nm along the direction from the inner matrix to surface.Specifically,experiment results and atomistic simulations reveal that these deformation twins are formed by gliding twinning partial dislocations that are dissociated from the lattice dislocations piled up at grain boundaries.The corresponding deformation mechanisms were evidenced to transit from the deformation twinning to dislocation slip when the grain size was below 2.45μm.Moreover,the Hall-Petch relationship plot and the surface equivalent stress along the gradient direction estimated by finite element analysis for the SPDT process were incorporated to quantitatively elucidate the transition of defo rmation mechanisms during the grain refinement process.Our findings have implications for the development of the facile SPD technique to construct high strength-ductility heterogeneous GNS metals,especially for the HCP metals.展开更多
Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of v...Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.展开更多
In this experimental study, involving deuterium–deuterium fusion neutron emission spectroscopy measurement on the experimental advanced superconducting tokamak(EAST), a liquid scintillator detector(BC501 A) was emplo...In this experimental study, involving deuterium–deuterium fusion neutron emission spectroscopy measurement on the experimental advanced superconducting tokamak(EAST), a liquid scintillator detector(BC501 A) was employed. This decision was based on the detector's superior sensitivity, optimal time-response, and its exceptional n–γ discrimination capability. This detector emits fast pulse signals that are as narrow as 100 ns, with high count rates that can peak at several Mcps. However, conventional nuclear circuits faced challenges in performing pulse height analysis, n–γ pulse shape discrimination, and in recording the entire pulse waveform under such high count rate conditions. To address these challenges, a high-speed digital pulse signal acquisition and processing system was designed. The system was developed around a micro-telecommunications computing architecture. Within this structure, a signal acquisition and processing(SAQP) module communicated through PCI Express links, achieving a bandwidth of up to 1.6 GB/s. To accurately capture the detailed shape of the pulses, four channels of analog-to-digital converters were used, each with a 500-MSPS sampling rate and a 14-bit resolution, ensuring an accuracy that surpassed 11 bits. An n–γ discrimination algorithm, based on the two-gate integral method, was also developed. Implemented within field programmable gate arrays, this algorithm provided a real-time n–γ discrimination spectrum for pulse height analysis. The system underwent rigorous testing in a laboratory setting and during an EAST experiment. The results confirmed that the innovative SAQP system can satisfy the demanding requirements of high-parameter experiments, manage count rates of up to 2 Mcps, execute real-time n–γ discrimination algorithms, and record entire pulse waveforms without any data loss.展开更多
The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The...The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.展开更多
Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environmen...Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environment,and the flow mechanism behind it and the degree of deterioration are not known.This study first analyzes the interaction between deflection angle and cabin flow field characteristics and ventilation performance.The results revealed that the interior temperature and pollutant concentration decreased slightly with increasing deflection angle,but resulted in significant deterioration of thermal comfort and air quality.This is evidenced by an increase in both draught rate and non-uniformity coefficient,an increase in the number of measurement points that do not satisfy the micro-wind speed and temperature difference requirements by about 5% and 15%,respectively,and an increase in longitudinal penetration of pollutants by a factor of about 5 and the appearance of locking regions at the ends of cabin.The results also show that changing the deflection pattern only affects the region of deterioration and does not essentially improve this deterioration.This study can provide reference and help for the ventilation design of high-speed trains.展开更多
High-speed trains operating in freezing rain are highly susceptible to severe ice accretion in the pantograph region,which compromises both power transmission efficiency and dynamic performance.To elucidate the underl...High-speed trains operating in freezing rain are highly susceptible to severe ice accretion in the pantograph region,which compromises both power transmission efficiency and dynamic performance.To elucidate the underlying mechanisms of this phenomenon,an Euler-Euler multiphase flow model was employed to simulate droplet impingement and collection on the pantograph surface,while a glaze-ice formation model incorporating wall film dynamics was used to capture the subsequent growth of ice.The effects of key parameters—including liquid water content,ambient temperature,train velocity,and droplet diameter—on the amount and morphology of ice were systematically investigated.The results show that ice accumulation intensifies with increasing liquid water content decreasing ambient temperature,and rising train speed.In contrast,larger droplet diameters reduce the overall ice mass but promote localized accretion on major structural elements.This behavior arises because larger droplets,with greater inertia,are less susceptible to entrainment by airflow into the pantograph's base region.During extended operation,substantial ice buildup develops on the pantograph head and upper and lower arms,severely impairing current collection from the overhead line and hindering the pantograph's lifting and lowering motions.展开更多
High-speed imaging is crucial for understanding the transient dynamics of the world,but conventional frame-by-frame video acquisition is limited by specialized hardware and substantial data storage requirements.We int...High-speed imaging is crucial for understanding the transient dynamics of the world,but conventional frame-by-frame video acquisition is limited by specialized hardware and substantial data storage requirements.We introduce“SpeedShot,”a computational imaging framework for efficient high-speed video imaging.SpeedShot features a low-speed dual-camera setup,which simultaneously captures two temporally coded snapshots.Cross-referencing these two snapshots extracts a multiplexed temporal gradient image,producing a compact and multiframe motion representation for video reconstruction.Recognizing the unique temporal-only modulation model,we propose an explicable motion-guided scale-recurrent transformer for video decoding.It exploits cross-scale error maps to bolster the cycle consistency between predicted and observed data.Evaluations on both simulated datasets and real imaging setups demonstrate SpeedShot’s effectiveness in video-rate up-conversion,with pronounced improvement over video frame interpolation and deblurring methods.The proposed framework is compatible with commercial low-speed cameras,offering a versatile low-bandwidth alternative for video-related applications,such as video surveillance and sports analysis.展开更多
Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transce...Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.展开更多
Electric current heat treatment is an innovative technique to improve microstructures and mechanical properties of metallic materials.The microstructures and mechanical properties of a powder metallurgy high-speed ste...Electric current heat treatment is an innovative technique to improve microstructures and mechanical properties of metallic materials.The microstructures and mechanical properties of a powder metallurgy high-speed steel(PM-HSS)treated by electric current heat treatment and traditional heat treatment are comparatively investigated.Results showed that after austenitizing at 1130°C,the structure of PM-HSS sample composed of ferrite matrix,M_(6)C,M_(23)C_(6),and MC carbides,transformed into a martensite matrix accompanied by M_(6)C and MC carbides.Compared to the traditional austenitizing at 1130℃ for 30 min,the electric current austenitizing at 1130℃ for 5 min dissolved more carbides,resulting in a greater solid solution of alloying elements in the matrix.Further traditional triple tempering led to carbide coarsening,whereas electric current triple tempering promoted the carbide dissolution.Notably,the dissolution of more carbides resulted in a higher C content in the martensite matrix of HSS treated by electric current,significantly promoting the formation of nanotwins(5-20 nm in width).The electric current triple tempering sample exhibited a yield strength of 3097 MPa,compressive strength of 5016 MPa,and a fracture strain of 30.0%,outperforming the traditional triple tempering sample by nearly 600 MPa in yield strength.Analysis revealed that this significant strengthening was primarily attributed to nanotwin formation and solid solution strengthening caused by carbide dissolution.展开更多
文摘Garment manufacturing requires a large number of resources such as energy,water,materials,and chemicals.Consequently,it creates a significant environmental footprint and waste pollution.Therefore,advanced apparel manufacturing develops energy-efficient and high-speed processes.They include ICT-based systems,computer-aided programs,fast digital printing,and robotic devices.
文摘一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。
文摘Numerical and experimental investigation on wave dynamic processes induced by high-speed trains entering railway tunnels are presented. Experiments were conducted by using a 1:250 scaled train-tunnel simulator. Numerical simulations were carried out by solving the axisymmetric Euler equations with the dispersion-controlled scheme implemented with moving boundary conditions. Pressure histories at various positions inside the train-tunnel simulator at different distance measured from the entrance of the simulator are recorded both numerically and experimentally, and then compared with each other for two train speeds. After the validation of nonlinear wave phenomena, detailed numerical simulations were then conducted to account for the generation of compression waves near the entrance, the propagation of these waves along the train tunnel, and their gradual development into a weak shock wave. Four wave dynamic processes observed are interpreted by combining numerical results with experiments. They are: high-speed trains moving over a free terrain before entering railway tunnels; the abrupt-entering of high-speed trains into railway tunnels; the abrupt-entering of the tail of high-speed trains into railway tunnels; and the interaction of compression and expansion waves ahead of high-speed trains. The effects of train-tunnel configuration, such as the train length and the train-tunnel blockage ratio, on these wave processes have been investigated as well.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(Nos.RS-2024–00351052 and RS-2024–00450561).
文摘This study compares the microstructural evolution,dynamic recrystallization(DRX)behavior,tensile properties,and age-hardenability between the newly developed high-speed-extrudable BA56 alloy and those of the widely recognized AZ31 alloy in industry.Unlike the AZ31 alloy,which retains partially unrecrystallized grains,the high-speed-extruded BA56 alloy demonstrates a coarser but entirely recrystallized and more homogeneous microstructure.The fine-grained structure and abundant Mg_(3)Bi_(2) particles in the BA56 extrusion billet significantly enhance its DRX behavior,thus enabling rapid and complete recrystallization during extrusion.The BA56 alloy contains band-like fragmented Mg_(3)Bi_(2) particles and numerous fine Mg_(3)Bi_(2) particles distributed throughout the material,in contrast to the sparse Al_(8)Mn_(5) particles in the AZ31 alloy.These features contribute to superior mechanical properties of the BA56 alloy,which achieves tensile yield and ultimate tensile strengths of 205 and 292 MPa,respectively,compared to 196 and 270 MPa for the AZ31 alloy.The superior strength of the BA56 alloy,even with its coarser grain size,can be explained by its elevated Hall-Petch constant and the strengthening contribution from the fine Mg_(3)Bi_(2) particles.Additionally,the BA56 alloy demonstrates significant age-hardenability,achieving a 22%enhancement in hardness following T5 aging,attributed to the precipitation of nanoscale Mg_(3)Bi_(2) and Mg_(17)Al_(12) phases.By contrast,the AZ31 alloy shows minimal hardening due to the absence of precipitate formation during aging.These findings suggest that the BA56 alloy is a promising candidate for the production of extruded Mg components requiring a combination of high productivity,superior mechanical performance,and wide-ranging process adaptability.
基金Project(2023YFB2604304)supported by the National Key R&D Program of ChinaProjects(52122810,51978586,51778542,U23A20666,52472458)supported by the National Natural Science Foundation of China+1 种基金Project(K2022G034)supported by the Technology Research and Development Program of China National Railway Group Co.Ltd.Projects(2020JDJQ0033,2023NSFSC0884)supported by Sichuan Province Science and Technology Support Program,China。
文摘The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.
基金National Natural Science Foundation of China(U2468201,62122012,62221001).
文摘The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport industry must innovate in key technologies to ensure high-quality transmissions for passengers and railway operations.These systems must function effectively under high mobility conditions while prioritizing safety,ecofriendliness,comfort,transparency,predictability,and reliability.On the other hand,the proposal of 6 G wireless technology introduces new possibilities for innovation in communication technologies,which may truly realize the current vision of HSR.Therefore,this article gives a review of the current advanced 6 G wireless communication technologies for HSR,including random access and switching,channel estimation and beamforming,integrated sensing and communication,and edge computing.The main application scenarios of these technologies are reviewed,as well as their current research status and challenges,followed by an outlook on future development directions.
基金supported by National Natural Science Foundation of China (No. 51275536)the China High Technology R&D Program 973 (No. 2015CB057206)
文摘The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu's method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ≥0.2 cm s-1. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s-1. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80–90 ms when dipping speed is from 1.6 to 4.0 cm s-1. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ≥55 ms.
基金supported by International Science and Technology Cooperation project(Grant No.2008DFA71750)
文摘In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR).After the advent of high-speed milling(HSM)pro cess,lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters.It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism.In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN)so as to have the most effective knowledge-base for given set of data.Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters.A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed.After training process,raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules.The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.
基金National Natural Science Foundation of China (No. U20A20275)Natural Science Foundation of Hunan Province,China (No. 2021JJ40096)。
文摘Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strain required for the nucleation of adiabatic shear band(ASB).The deformation results of cylindrical and hat-shaped samples show that the critical strain required for ASB nucleation corresponds to the strain at the first local minimum after peak stress on the first derivative curve of true stress−true strain.The method of determining the critical strain for the nucleation of ASB through the first derivative of the flow stress curve is named the first derivative method.The proposed first derivative method is not only applicable to the 7003 aluminum alloy,but also to other metal materials,such as commercial purity titanium,WY-100 steel,and AM80 magnesium alloy.This proves that it has strong universality.
基金supported by the German Research Foundation(DFG)the DFG for funding the subproject B3 and C5 of the Collaborative Research Center 666 "Integral sheet metal design with higher order bifurcations-Development,Production,Evaluation″
文摘The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting speed,feed per tooth,cutting tool geometry and cooling strategy are demonstrated.It has been found that the surface quality of machined grooves can be improved by increasing the cutting speed.However,cryogenic cooling with CO_2 exhibits no significant improvement of surface quality.Microstructure and hardness investigations revealed similar microstructure and hardness variations near the machined groove walls for both utilized tool geometries.Therefore,cryogenic cooling can decrease more far-ranging hardness reductions due to high process temperatures,especially in the UFG regions of the machined parts,whilst it cannot prevent the drop in hardness directly at the groove walls.
基金National Key R&D Program of China(2022YFB2602900)R&D Fund Project of China Academy of Railway Sciences Corporation Limited(2021YJ084)+2 种基金Project of Science and Technology R&D Program of China Railway(2016G002-K)R&D Fund Project of China Railway Major Bridge Reconnaissance&Design Institute Co.,Ltd.(2021)R&D Fund Project of China Railway Shanghai Group(2021141).
文摘Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.
基金financially supported by the National Natural Science Foundation of China(Nos.51701171 and 51971187)the Partner State Key Laboratories in Hong Kong from the Innovation and Technology Commission(ITC)of the Government of the Hong Kong Special Administration Region(HKASR),Chinafinancial support from the PolyU Research Office(Project Code:1-BBXA)。
文摘Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit superior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point diamond turning(SPDT),was developed to produce effectively the GNS layer on the hexagonal close-packed(HCP)structural Mg alloy.The high-resolution transmission electron microscopy observations and atomistic molecular dynamics simulations were mainly performed to atomic-scale dissect the grain refinement process and corresponding plastic deformation mechanisms of the GNS layer.It was found that the grain refinement process for the formation of the GNS Mg alloy layer consists of elongated coarse grains,lamellar fine grains with deformation-induced-tension twins and contraction twins,ultrafine grains,and nanograins with the grain size of~70 nm along the direction from the inner matrix to surface.Specifically,experiment results and atomistic simulations reveal that these deformation twins are formed by gliding twinning partial dislocations that are dissociated from the lattice dislocations piled up at grain boundaries.The corresponding deformation mechanisms were evidenced to transit from the deformation twinning to dislocation slip when the grain size was below 2.45μm.Moreover,the Hall-Petch relationship plot and the surface equivalent stress along the gradient direction estimated by finite element analysis for the SPDT process were incorporated to quantitatively elucidate the transition of defo rmation mechanisms during the grain refinement process.Our findings have implications for the development of the facile SPD technique to construct high strength-ductility heterogeneous GNS metals,especially for the HCP metals.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20204007,50390090,20490220,10590355)the Doctoral Foundation of National Education Committee of China(No.20030248008)the 863 Project of China(No.2002AA336120).
文摘Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.
基金supported by the Users with Excellence Program of the Hefei Science Center CAS (No. 2020HSC-UE012)the Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228)the Institute of Energy,Hefei Comprehensive National Science Center (Nos. 21KZS205, 21KZL401 and 22KZZ502)。
文摘In this experimental study, involving deuterium–deuterium fusion neutron emission spectroscopy measurement on the experimental advanced superconducting tokamak(EAST), a liquid scintillator detector(BC501 A) was employed. This decision was based on the detector's superior sensitivity, optimal time-response, and its exceptional n–γ discrimination capability. This detector emits fast pulse signals that are as narrow as 100 ns, with high count rates that can peak at several Mcps. However, conventional nuclear circuits faced challenges in performing pulse height analysis, n–γ pulse shape discrimination, and in recording the entire pulse waveform under such high count rate conditions. To address these challenges, a high-speed digital pulse signal acquisition and processing system was designed. The system was developed around a micro-telecommunications computing architecture. Within this structure, a signal acquisition and processing(SAQP) module communicated through PCI Express links, achieving a bandwidth of up to 1.6 GB/s. To accurately capture the detailed shape of the pulses, four channels of analog-to-digital converters were used, each with a 500-MSPS sampling rate and a 14-bit resolution, ensuring an accuracy that surpassed 11 bits. An n–γ discrimination algorithm, based on the two-gate integral method, was also developed. Implemented within field programmable gate arrays, this algorithm provided a real-time n–γ discrimination spectrum for pulse height analysis. The system underwent rigorous testing in a laboratory setting and during an EAST experiment. The results confirmed that the innovative SAQP system can satisfy the demanding requirements of high-parameter experiments, manage count rates of up to 2 Mcps, execute real-time n–γ discrimination algorithms, and record entire pulse waveforms without any data loss.
基金support from Open Project of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41622030)Danyang Coinch New Material Technology Co.,Ltd.
文摘The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.
基金Project(12372049)supported by the National Natural Science Foundation of ChinaProject(2682023ZTPY036)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2023TPL-T06)supported by the Independent Project of State Key Laboratory of Rail Transit Vehicle System,China。
文摘Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environment,and the flow mechanism behind it and the degree of deterioration are not known.This study first analyzes the interaction between deflection angle and cabin flow field characteristics and ventilation performance.The results revealed that the interior temperature and pollutant concentration decreased slightly with increasing deflection angle,but resulted in significant deterioration of thermal comfort and air quality.This is evidenced by an increase in both draught rate and non-uniformity coefficient,an increase in the number of measurement points that do not satisfy the micro-wind speed and temperature difference requirements by about 5% and 15%,respectively,and an increase in longitudinal penetration of pollutants by a factor of about 5 and the appearance of locking regions at the ends of cabin.The results also show that changing the deflection pattern only affects the region of deterioration and does not essentially improve this deterioration.This study can provide reference and help for the ventilation design of high-speed trains.
基金Natural Science Foundation of Shandong Province(Grant No.ZR2022ME180)the National Natural Science Foundation of China(Grant No.51705267).
文摘High-speed trains operating in freezing rain are highly susceptible to severe ice accretion in the pantograph region,which compromises both power transmission efficiency and dynamic performance.To elucidate the underlying mechanisms of this phenomenon,an Euler-Euler multiphase flow model was employed to simulate droplet impingement and collection on the pantograph surface,while a glaze-ice formation model incorporating wall film dynamics was used to capture the subsequent growth of ice.The effects of key parameters—including liquid water content,ambient temperature,train velocity,and droplet diameter—on the amount and morphology of ice were systematically investigated.The results show that ice accumulation intensifies with increasing liquid water content decreasing ambient temperature,and rising train speed.In contrast,larger droplet diameters reduce the overall ice mass but promote localized accretion on major structural elements.This behavior arises because larger droplets,with greater inertia,are less susceptible to entrainment by airflow into the pantograph's base region.During extended operation,substantial ice buildup develops on the pantograph head and upper and lower arms,severely impairing current collection from the overhead line and hindering the pantograph's lifting and lowering motions.
基金supported by the National Natural Science Foundation of China(Grant No.62305184)the Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2023A1515012932)+7 种基金the Science,Technology,and Innovation Commission of Shenzhen Municipality(Grant No.JCYJ20241202123919027)the Major Key Project of Pengcheng Laboratory(Grant No.PCL2024A1)the Science Fund for Distinguished Young Scholars of Zhejiang Province(Grant No.LR23F010001)the Research Center for Industries of the Future(RCIF)at Westlake University and and the Key Project of Westlake Institute for Optoelectronics(Grant No.2023GD007)the Zhejiang“Pioneer”and“Leading Goose”R&D Program(Grant Nos.2024SDXHDX0006 and 2024C03182)the Ningbo Science and Technology Bureau“Science and Technology Yongjiang 2035”Key Technology Breakthrough Program(Grant No.2024Z126)the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant Nos.C5031-22G,CityU11310522,and CityU11300123)the City University of Hong Kong(Grant No.9610628).
文摘High-speed imaging is crucial for understanding the transient dynamics of the world,but conventional frame-by-frame video acquisition is limited by specialized hardware and substantial data storage requirements.We introduce“SpeedShot,”a computational imaging framework for efficient high-speed video imaging.SpeedShot features a low-speed dual-camera setup,which simultaneously captures two temporally coded snapshots.Cross-referencing these two snapshots extracts a multiplexed temporal gradient image,producing a compact and multiframe motion representation for video reconstruction.Recognizing the unique temporal-only modulation model,we propose an explicable motion-guided scale-recurrent transformer for video decoding.It exploits cross-scale error maps to bolster the cycle consistency between predicted and observed data.Evaluations on both simulated datasets and real imaging setups demonstrate SpeedShot’s effectiveness in video-rate up-conversion,with pronounced improvement over video frame interpolation and deblurring methods.The proposed framework is compatible with commercial low-speed cameras,offering a versatile low-bandwidth alternative for video-related applications,such as video surveillance and sports analysis.
基金supported by the Strategic Priority Research Program of CAS(Grant No.XDB43020202)the Natural Science Foundation of China(Grant Nos.61934007,62274153,62090053).
文摘Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.
基金financially supported by the National Natural Science Foundation of China(Nos.52271034,52301058 and 52471042)China Postdoctoral Science Foundation(No.2023M732183)Postdoctoral Fellowship Program of CPSF(No.GZB20230399).
文摘Electric current heat treatment is an innovative technique to improve microstructures and mechanical properties of metallic materials.The microstructures and mechanical properties of a powder metallurgy high-speed steel(PM-HSS)treated by electric current heat treatment and traditional heat treatment are comparatively investigated.Results showed that after austenitizing at 1130°C,the structure of PM-HSS sample composed of ferrite matrix,M_(6)C,M_(23)C_(6),and MC carbides,transformed into a martensite matrix accompanied by M_(6)C and MC carbides.Compared to the traditional austenitizing at 1130℃ for 30 min,the electric current austenitizing at 1130℃ for 5 min dissolved more carbides,resulting in a greater solid solution of alloying elements in the matrix.Further traditional triple tempering led to carbide coarsening,whereas electric current triple tempering promoted the carbide dissolution.Notably,the dissolution of more carbides resulted in a higher C content in the martensite matrix of HSS treated by electric current,significantly promoting the formation of nanotwins(5-20 nm in width).The electric current triple tempering sample exhibited a yield strength of 3097 MPa,compressive strength of 5016 MPa,and a fracture strain of 30.0%,outperforming the traditional triple tempering sample by nearly 600 MPa in yield strength.Analysis revealed that this significant strengthening was primarily attributed to nanotwin formation and solid solution strengthening caused by carbide dissolution.