期刊文献+
共找到742,774篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and Characterization of a High-Stability,Low-Noise Ag/AgCl Sensor for Marine Electric Field Measurements
1
作者 WANG Chenjuan LI Yuguo +4 位作者 LU Jie DAI Tianyi ZHONG Zhihao LIU Lanjun CHEN Jialin 《Journal of Ocean University of China》 2025年第2期332-342,共11页
A new Ag/AgCl sensor for measuring marine electric fields was prepared and characterized through electrochemical methods and scanning electron microscopy.Its performance was evaluated in both laboratory and deep-water... A new Ag/AgCl sensor for measuring marine electric fields was prepared and characterized through electrochemical methods and scanning electron microscopy.Its performance was evaluated in both laboratory and deep-water settings.The study indicates that the double-pulse electrodeposition method is advantageous for producing Ag/AgCl sensors that maintain excellent stability over time.During a 20-day continuous stability test,the potential difference of the sensor consistently remained between -24.76μV and 62.07μV,with a minimum potential difference drift of 2.77μV per 24 h.All sensors accurately detected artificial signals in both the time and frequency domains,and their responses were consistent with one another.The minimum noise level of the sensor was 0.59 nV(√Hz)^(-1)@1 Hz.The sensor performed well in high-precision electric field measurements at a depth of approximately 2800 m in the South China Sea.The high stability and low noise level of the sensor make it an effective tool for detecting electrical conductivity structures beneath the seafloor. 展开更多
关键词 Ag/AgCl marine electric field sensor double-pulse electrodeposition method high stability low noise level
在线阅读 下载PDF
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
2
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery high-voltage cathode materials stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Densification,microstructure,mechanical properties,and thermal stability of high-strength Ti-modified Al-Si-Mg-Zr aluminum alloy fabricated by laser-powder bed fusion 被引量:1
3
作者 Yaoxiang Geng Zhifa Shan +2 位作者 Jiaming Zhang Tianshuo Wei Zhijie Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2547-2559,共13页
Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion... Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly. 展开更多
关键词 laser-powder bed fusion Ti-modified Al-Si-Mg-Zr alloy MICROSTRUCTURE mechanical property thermal stability
在线阅读 下载PDF
Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability 被引量:1
4
作者 Zhongying Ji Bingang Xu +5 位作者 Zhiyong Su Xiaochen Wang Yang Lyu Sen Liu Tao Wu Xiaolong Wang 《International Journal of Extreme Manufacturing》 2025年第2期630-639,共10页
Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on... Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on traditional thermal processing or direct ink writing three-dimensional(3D)printing.These methods are not conducive to manufacturing complex structures and present challenges such as time inefficiency,poor accuracy,and the necessity of multiple steps,significantly limiting SR applications.In this study,we developed an SR-based ink suitable for vat photopolymerization 3D printing using a multi-thiol monomer.This ink enables the one-step fabrication of complex architectures with high printing resolution at the micrometer scale,providing excellent mechanical strength and superior chemical stability.Specifically,the optimized 3D printing SR-20 exhibits a tensile stress of 1.96 MPa,an elongation at break of 487.9%,and an elastic modulus of 225.4 kPa.Additionally,the 3D-printed SR samples can withstand various solvents(acetone,toluene,and tetrahydrofuran)and endure temperatures ranging from-50℃ to 180℃,demonstrating superior stability.As a emonstration of the application,we successfully fabricated a series of SR-based soft pneumatic actuators and grippers in a single step with this technology,allowing for free assembly for the first time.This ultraviolet-curable SR,with high printing resolution and exceptional stability performance,has significant potential to enhance the capabilities of 3D printing for applications in soft actuators,robotics,flexible electronics,and medical devices. 展开更多
关键词 3D printing silicone rubber high printing resolution pneumatic actuator
在线阅读 下载PDF
Spontaneous colonic transection following pathologic complete response to pembrolizumab in high microsatellite instability colorectal cancer:A case report and review of literature 被引量:1
5
作者 Chungyeop Lee Min Hyun Kim +6 位作者 Eu-Tteum Choi In Ja Park Seok-Byung Lim Yong Sik Yoon Chan Wook Kim Jong Lyul Lee Eun Jung Park 《World Journal of Clinical Cases》 2025年第30期87-94,共8页
High microsatellite instability(MSI-H)colorectal cancer(CRC),caused by deficient mismatch repair,accounts for about 15%of all CRC cases and is more common in right-sided tumors.While early-stage MSI-H CRC has a relati... High microsatellite instability(MSI-H)colorectal cancer(CRC),caused by deficient mismatch repair,accounts for about 15%of all CRC cases and is more common in right-sided tumors.While early-stage MSI-H CRC has a relatively good prognosis,advanced cases often respond poorly to standard chemotherapy.Immune checkpoint inhibitors,such as pembrolizumab,have shown strong and lasting effects in MSI-H CRC.Pembrolizumab is now approved as a first-line treatment for metastatic MSI-H CRC due to its superior outcomes compared to traditional chemotherapy.CASE SUMMARY A 44-year-old male with MSI-H transverse colon cancer presented with hematochezia,abdominal pain,and significant weight loss.Imaging revealed a bulky tumor with invasion of adjacent structures and multiple liver lesions.A diverting ileostomy was performed followed by 36 cycles of pembrolizumab.The patient achieved a clinical and radiologic complete response.One month after completing the treatment,the patient underwent laparoscopic right hemicolectomy.A spontaneous transection of the colon at the original tumor site was unexpectedly identified.Final pathology confirmed pathological complete response(ypT0N0)with fibrosis.The patient recovered well after surgery,and follow-up showed no evidence of recurrence.CONCLUSION Immune checkpoint inhibitors may cause delayed structural damage to bowel tissue even after apparent complete tumor regression. 展开更多
关键词 Pembrolizumab Colon cancer high microsatellite instability Mismatch repair deficient TRANSECTION Case report
暂未订购
Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution 被引量:2
6
作者 Mengdi Gan Liping Lai +5 位作者 Jiankun Wang Jun Wang Lin Chen Jingjin He Jing Feng Xiaoyu Chong 《Journal of Materials Science & Technology》 2025年第6期79-94,共16页
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te... Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs. 展开更多
关键词 Thermal barrier coating(TBCs) high-entropy rare earth oxides(HEOs) high-temperature phase stability Oxygen-ionic conductivity Thermal conductivity
原文传递
Ca doping NH_(4)V_(4)O_(10) with enhanced zinc-ion storage ability and structural stability for high-performance aqueous zinc-ion batteries
7
作者 Song Yao Yan-Gang Sun +1 位作者 Zhe Cui Guan-Jie He 《Rare Metals》 2025年第9期6081-6091,共11页
NH_(4)V_(4)O_(10)(NVO)as a cathode material of zincion battery is prone to collapse in the repeated process of embedding and de-embedding of Zn^(2+),and its application is limited by the instability of the material.He... NH_(4)V_(4)O_(10)(NVO)as a cathode material of zincion battery is prone to collapse in the repeated process of embedding and de-embedding of Zn^(2+),and its application is limited by the instability of the material.Here,calciumdoped ammonium vanadate(CNVO)is successfully synthesized via a one-step hydrothermal approach.The intercalated Ca2+in NVO serves as a firm pillar between the[VO_n]layers to maintain the structure stability during the ion insertion/extraction process.Furthermore,density functional theory(DFT)calculations and ex situ experiments reveal that CNVO demonstrates higher affinity and conductivity compared to NVO,which can effectively improve the kinetics of Zn^(2+)diffusion,reduce the electrostatic repulsion of Zn^(2+)during intercalation and deintercalation,and maintaining the stability of the layered structure.As a result,the CNVO material demonstrates outstanding electrochemical performance,delivering a specific capacity of 183 m Ah·g^(-1)at 5 A·g^(-1).Moreover,it sustains an impressive 91%capacity retention after 1300 cycles. 展开更多
关键词 Calcium-doped ammonium vanadate Pillar engineering high affinity Structure stability Improved kinetics
原文传递
Unprecedented energetic zwitterion integrating thermal stability,high energy density and low sensitivity:Overcoming performance trade-offs in conventional energetic materials
8
作者 Bojun Tan Xiong Yang +13 位作者 Jinkang Dou Jian Su Jing Zhang Siwei Song Changwei Tang Minghui Xu Shu Zeng Wenjie Li Jieyu Luan Gen Zhang Qinghua Zhang Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 2025年第10期220-229,共10页
The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic el... The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic electronic delocalization strategy,yielding TYX-3,the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties.Uniformπ-electron distribution and elevated bond dissociation energy confer exceptional thermal stability(T_(d)=365℃)with TATB-level insensitivity(impact sensitivity IS>40 J,friction sensitivity FS>360 N).Engineeredπ-stacked networks enable record density(1.99 g·cm^(-3))with detonation performance surpassing HMX benchmarks(detonation velocity 9315 m·s^(-1),detonation pressure 36.6 GPa).Practical implementation in Poly(3-nitratomethyl-3-methyloxetane)(PNMMFO)solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse.This work establishes a new design paradigm for energetic materials,overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering. 展开更多
关键词 Energetic materials Triazolo-tetrazine framework high energy density Thermal stability Solid propellants
在线阅读 下载PDF
Exploration of the copper–niobium composite superconducting cavities for pursuing extremely high operational stability at IMP 被引量:1
9
作者 Shi-Chun Huang Yuan He +16 位作者 Long Peng Chun-Long Li Sheng-Xue Zhang Meng-Xin Xu Zi-Qin Yang Hao Guo Lu-Bei Liu Ping-Ran Xiong An-Dong Wu Qing-Wei Chu Xiao-Fei Niu Teng Tan Zhi-Jun Wang Jun-Hui Zhang Sheng-Hu Zhang Hong-Wei Zhao Wen-Long Zhan 《Nuclear Science and Techniques》 2025年第5期19-29,共11页
Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes dev... Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements. 展开更多
关键词 Superconducting radio-frequency cavities Cu-Nb composite Mechanical and thermal stability Thermoelectrical effect Magnetic flux trapping effect
在线阅读 下载PDF
Thermodynamic Modeling of the Ti-Hf-Zr-Nb-Ta Refractory High Entropy Alloy and Its Application in Analyzing Phase Stability
10
作者 Jian Ding Jinghan Gao +3 位作者 Enkuan Zhang Ying Tang Lijun Zhang Xingchuan Xia 《Computers, Materials & Continua》 2025年第10期539-556,共18页
Ti-Hf-Zr-Nb-Ta refractory high-entropy alloys(RHEAs)exhibiting a dual-phase structure resulting from martensitic transformation offer significant ductility enhancement,but their design requires precise control of the ... Ti-Hf-Zr-Nb-Ta refractory high-entropy alloys(RHEAs)exhibiting a dual-phase structure resulting from martensitic transformation offer significant ductility enhancement,but their design requires precise control of the phase stability between body-centred cubic(BCC)and hexagonal close-packed(HCP)phases.This study establishes a comprehensive thermodynamic database for the Ti-Hf-Zr-Nb-Ta system using the 3rd-generation Calculation of Phase Diagrams(CALPHAD)model.The reliability of the database is validated by the strong agreement between the calculated thermodynamic properties and phase equilibria and the experimental data for pure element,as well as for binary and ternary systems.Utilizing this database,the phase stability of various RHEAs within this system was predicted,showing that all RHEAs exhibit a BCC single phase over a wide temperature range.The HCP phase is stable and coexists with BCC phase in both quaternary and quinary RHEAs at lower temepratures.Calculations of the Gibbs energy difference between the BCC and HCP phases(ΔG^(HCP−BCC))in TiHfZrTa_(x) and TiHfZrNb_(x) alloys reveal that both Nb and Ta stabilize the BCC phase,with Nb exerting a stronger influence.Significantly,a metastable BCC+HCP region in the TiHfZrTa_(x) and TiHfZrNb_(x) alloys with ΔG^(HCP−BCC) ranging from 1786 to 2230 J/mol.Utilizing this finding,the critical Nb composition range(0.0367–0.0712)to achieve the metastable BCC+HCP phase is precisely predicted in TiHfZrTa_(0.2)Nb_(x) alloys,enabling targeted design for martensitic transformation.The predictions show excellent agreement with existing experimental measurements. 展开更多
关键词 Refractory high entropy alloys CALPHAD 3rd-generation thermodynamic description phase stability
在线阅读 下载PDF
Critical roles of AlPO_(4) coating in enhancing cycling stability and rate capability of high voltage LiNi_(0.5)Mn_(1.5)O_(4) cathode materials
11
作者 WU Jie LUO Zhihong +6 位作者 CHEN Xiaoli XIONG Fangfang CHEN Li ZHANG Biao SHI Bin OUYANG Quansheng SHAO Jiaojing 《无机化学学报》 北大核心 2025年第5期948-958,共11页
LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LN... LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode. 展开更多
关键词 LiNi_(0.5)Mn_(1.5)O_(4) high voltage lithium‑ion batteries high‑temperature solid‑phase method aluminum phosphate
在线阅读 下载PDF
Synergy of F^(-) doping and fluorocarbon coating on elevating high-voltage cycling stability of NCM811 for lithium-ion batteries
12
作者 Gao-Xing Sun Bin Zhu +9 位作者 Rui He Qi-Dong Liang Sheng-Yu Jiang Yan Ren Xiao-Xiao Pan Yu-Qing Sun Mi Lu Wen-Xian Zhang Cheng-Huan Huang Shu-Xin Zhuang 《Rare Metals》 2025年第3期1577-1593,共17页
Although lithium-ion batteries are widely recognized as a new generation of energy storage devices,their large-scale application is severely hampered by their low energy density and restricted cyclic stability.Herein,... Although lithium-ion batteries are widely recognized as a new generation of energy storage devices,their large-scale application is severely hampered by their low energy density and restricted cyclic stability.Herein,an ingenious dual-modified interface,where the F-doping and fluorocarbon coating co-existed on Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)surface,is rationally constructed to elevate its energy density and structural stability attributed to F-grafting between the bulk material and the coating utilizing a robust super-conformal fluorocarbon coating structural framework and more stable F-doped system under high charge/discharge cut-off voltage.In comparison with a single carbon-coated modified Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2),the dual-modified sample overcomes the fatal disadvantage of carbon coating stripping during long-period cycles ascribed to the“TM-F-multifunctional coating”connector which firmly combines the bulk material with the coating with a strong interaction force,exhibiting a more stable-reversible structure and excellent comprehensive electrochemical performance under high cut-off voltage.Concomitantly,the F-transition metal bonds with stronger bond energies improve its structural reversibility during the processes of charge/discharge under high voltage.Furthermore,the fluorocarbon coating enhances its charge transfer ability and effectively restrains the interfacial side reactions.Additionally,the climbing nudged elastic band methodology is used to calculate the diffusion energy barrier of lithium-ions in the matrix material,which confirms the fundamental reason for its superior lithium-ion diffusion ability.The high pseudocapacitance contribution ratio is perfectly explained by calculating the adsorption capacity on the surface of the dual-modified sample.Consequently,experiments and theoretical calculations unequivocally confirm its distinguished electrochemical properties under high cut-off voltage. 展开更多
关键词 NCM811 cathode material Dual modification high cut-off voltages high energy density DFT
原文传递
Advancements and Challenges in Enhancing Thermal Stability of Lithium-Ion Battery Separators: Review on CoatingMaterials, High-Temperature Resistant Materials and Future Trends
13
作者 Haoran Li Yayou Xu +3 位作者 Zihan Zhang Feng Han Ye-Tang Pan Rongjie Yang 《Journal of Polymer Materials》 2025年第1期33-55,共23页
The thermal stability of lithium-ion battery separators is a critical determinant of battery safety and performance,especially in the context of rapidly expanding applications in electric vehicles and energy storage s... The thermal stability of lithium-ion battery separators is a critical determinant of battery safety and performance,especially in the context of rapidly expanding applications in electric vehicles and energy storage systems.While traditional polyolefin separators(PP/PE)dominate the market due to their cost-effectiveness and mechanical robustness,their inherent poor thermal stability poses significant safety risks under high-temperature conditions.This review provides a comprehensive analysis of recent advancements in enhancing separator thermal stability through coating materials(metal,ceramic,inorganic)and novel high-temperature-resistant polymers(e.g.,PVDF copolymers,PI,PAN).Notably,we critically evaluate the trade-offs between thermal resilience and electrochemical performance,such as the unintended increase in electronic conductivity from metal coatings(e.g.,Cu,MOFs)and reduced electrolyte wettability in ceramic coatings(e.g.,Al_(2)O_(3)).Innovations in hybrid coatings(e.g.,BN/PAN composites,gradient-structured MOFs)and scalable manufacturing techniques(e.g.,roll-to-roll electrospinning)are highlighted as promising strategies to balance these competing demands.Furthermore,a comparative analysis of next-generation high-temperature-resistant separators underscores their ionic conductivity,mechanical strength,and scalability,offering actionable insights for material selection.The review concludes with forward-looking perspectives on integrating machine learning for material discovery,optimizing interfacial adhesion in ceramic coatings,and advancing semi-/all-solid-state batteries to address both thermal and electrochemical challenges.This work aims to bridge the gap between laboratory innovations and industrial applications,fostering safer and more efficient lithium battery technologies. 展开更多
关键词 Lithium battery thermal stability SEPARATOR COATING
在线阅读 下载PDF
3D Computational Modeling and Stability Analysis of Highway Slope:A Case Study from the X104 Section in Ganxian County
14
作者 Fujie Dai Yiwen Jin +1 位作者 Yongliang Wang Jiajun Li 《Journal of Electronic Research and Application》 2025年第2期65-68,共4页
Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS softw... Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained. 展开更多
关键词 3D modeling stability GIS highway planning
在线阅读 下载PDF
A Novel Nano-Structured Die Steel with High Strength and High Thermal Stability
15
作者 Xinhao Li Jieli Ma +1 位作者 Yiren Wang Yong Jiang 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1591-1603,共13页
A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 n... A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 nm)with an ultra-high density of ultra-fine Y-Al-O nano-oxides(number density:~(1-1.5)×10^(23)m^(−3),mean size:5.1-7.2 nm).Prolonged thermal exposure further induced the new,highly dense precipitation of ultra-fine Y-Zr-O nano-oxides.Both nano-oxides tended to be wrapped up with a B2-NiAl nano-shells.Although the quench-tempered sample showed much higher room-temperature strength(yield strength=1393±40 MPa and ultimate tensile strength=1774±11 MPa)and slightly lower elongation(elongation=13.6%±0.6%)than the annealed sample(YS=988±7 MPa,UTS=1490±12 MPa,and EL=15.2%±1.1%),both samples exhibited better strength-ductility synergy at room temperature and much higher thermal stabilities at high temperatures(600-700℃)than all those conventional hot-work die steels,which makes the new ODS steel highly promising for advanced hot-work mold and die applications at high temperatures above 600℃. 展开更多
关键词 Hot-work die steel Oxide-dispersion-strengthened NANO-STRUCTURE Core-shelled Thermal stability
原文传递
First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
16
作者 Tao Wang Ming-Hong Wen +4 位作者 Xin-Xin Zhang Wei-Hua Wang Jia-Mei Liu Xu-Ying Wang Pei-Fang Li 《Chinese Physics B》 2025年第3期142-150,共9页
Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure... Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure prediction method to conduct a comprehensive analysis of the crystal structures and electronic properties of molybdenum nitride(Mo_(x)N_(1-x))under high pressure.We discovered two novel high-pressure phases:Imm2-MoN_(3) and Cmmm-MoN_(4),and confirmed their stability through the analysis of elastic constants and phonon dispersion curves.Notably,the MoN_(4) phase,with its high Vickers hardness of 36.9 GPa,demonstrates potential as a hard material.The results of this study have broadened the range of known high-pressure phases of molybdenum nitride,providing the groundwork for future theoretical and experimental researches. 展开更多
关键词 molybdenum nitride CALYPSO crystal structure high pressure
原文传递
Large-stroke snap-through instability in the axial direction of a bi-stable structure with high slenderness
17
作者 Huan Zhou Qian Sun +4 位作者 Haibin Xia Yiwei Xiong Youchao Yuan Yin Huang Jianghong Yuan 《Theoretical & Applied Mechanics Letters》 2025年第1期43-48,共6页
Mechanical snap-through instability of bi-stable structures may find many practical applications such as state switching and energy transforming.Although there exist diverse bi-stable structures capable of snap-throug... Mechanical snap-through instability of bi-stable structures may find many practical applications such as state switching and energy transforming.Although there exist diverse bi-stable structures capable of snap-through instability,it is still difficult for a structure with high slenderness to undergo the axial snap-through instability with a large stroke.Here,an elastic structure with high slenderness is simply constructed by a finite number of identical,conventional bi-stable units with relatively low slenderness in series connection.For realizing the axial snap-through instability with a large stroke,common scissors mechanisms are further introduced as rigid constraints to guarantee the synchronous snap-through instability of these bi-stable units.The global feature of the large-stroke snap-through instability realized here is robust and even insusceptible to the local out-of-synchronization of individual units.The present design provides a simple and feasible way to achieve the large-stroke snap-through instability of slender structures,which is expected to be particularly useful for state switching and energy transforming in narrow spaces. 展开更多
关键词 Synchronous instability Snap-through instability Bi-stability Large stroke high slenderness
在线阅读 下载PDF
Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films
18
作者 Shi Li Wenshuai Zhao +4 位作者 Yong Qi Wenbin Niu Wei Ma Bingtao Tang Shufen Zhang 《Chinese Chemical Letters》 2025年第9期407-412,共6页
Dye-based color films are increasingly considered as viable alternatives to pigment-based color films in complementary metal-oxide-semiconductor(CMOS) image sensors.Herein,a series of azo dyes utilizing 5-methyl-2-phe... Dye-based color films are increasingly considered as viable alternatives to pigment-based color films in complementary metal-oxide-semiconductor(CMOS) image sensors.Herein,a series of azo dyes utilizing 5-methyl-2-phenyl-4-(2-phenylhydrazono)-2,4-dihydro-3H-pyrazol-3-one as the coupling component and aromatic amines with various electron-withdrawing groups(NO_(2),CN,Br) as diazo components were designed and synthesized.The presence of intermolecular hydrogen bonding between the hydrogen atom on the N-H group and the oxygen atom of the C=O group of the hydrazo structure facilitates the formation of a stable six-membered ring.Additionally,the electron-withdrawing groups in the diazo component further stabilize this hydrogen-bonded structure.As a result,these azo dyes(P-2,P-3,P-4,P-5)exhibit not only excellent light stability but also ultra-highly thermal stability(T_(d)> 260℃).Therein,the synthesized dyes P-2 and P-3 with great bright yellow color(~400 nm),proper solubility(~6.00g/100 g)were selected to make for color films.And their dye-based color films displayed ultra-highly thermal and light stability(color difference ΔE<3).Notably,the increased planarity of the molecular structure by hydrogen bonding for the novel dyes ensures a balance between high transmittance(>90%) in the 550-780 nm wavelength range and the solvent resistance of the dye-based color films.This work contributes to the advancement of next-generation smart CMOS devices and offers valuable insights into the design of azo dyes for applications in the field of organic electronics. 展开更多
关键词 Visual identification Azo dyes Color films Thermal stability Hydrogen bonding
原文传递
Heteroatoms Synergistic Anchoring Vacancies in Phosphorus-Doped CoSe_(2)Enable Ultrahigh Activity and Stability in Li-S Batteries
19
作者 Xiaoya Zhou Wei Mao +4 位作者 Chengwei Ye Qi Liang Peng Wang Xuebin Wang Shaochun Tang 《Nano-Micro Letters》 2025年第12期305-318,共14页
Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce... Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts. 展开更多
关键词 VACANCY Heteroatomic anchoring Vacancy migration Activity/stability trade-off ELECTROCATALYSTS
在线阅读 下载PDF
Ultrastrong nonflammable in-situ polymer electrolyte with enhanced interface stability boosting high-voltage Li metal batteries under harsh conditions
20
作者 Lisi Xu Xuan Wang +3 位作者 Yilu Wu Chaoyang Li Kuirong Deng Zhenhua Yan 《Journal of Energy Chemistry》 2025年第3期63-72,共10页
In-situ polymer electrolytes prepared by Li salt-initiated polymerization are promising electrolytes for solid-state Li metal batteries owing to their enhanced interface contact and facile and green preparation proces... In-situ polymer electrolytes prepared by Li salt-initiated polymerization are promising electrolytes for solid-state Li metal batteries owing to their enhanced interface contact and facile and green preparation process.However,conventional in-situ polymer electrolytes suffer from poor interface stability,low mechanical strength,low oxidation stability,and certain flammability.Herein,a silsesquioxane(POSS)-nanocage-crosslinked in-situ polymer electrolyte(POSS-DOL@PI-F)regulated by fluorinated plasticizer and enhanced by polyimide skeleton is fabricated by Li salt initiated in-situ polymerization.Polyimide skeleton and POSS-nanocage-crosslinked network significantly enhance the tensile strength(22.8 MPa)and thermal stability(200℃)of POSS-DOL@PI-F.Fluorinated plasticizer improves ionic conductivity(6.83×10^(-4)S cm^(-1)),flame retardance,and oxidation stability(5.0 V)of POSS-DOL@PI-F.The fluorinated plasticizer of POSS-DOL@PI-F constructs robust LiF-rich solid electrolyte interphases and cathode electrolyte interphases,thereby dramatically enhancing the interface stability of Li metal anodes and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)cathodes.POSS-DOL@PI-F enables stable,long-term(1200 h),and dendrite-free cycle of Li‖Li cells.POSS-DOL@PI-F significantly boosts the performance of Li‖NCM811cells,which display superior cycle stability under harsh conditions of high voltage(4.5 V),high temperature(60℃),low temperature(-20℃),and high areal capacity.This work provides a rational design strategy for safe and efficient polymer electrolytes. 展开更多
关键词 Polymer electrolytes Interface stability Li salt-initiated polymerization Flame retardant Mechanical strength
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部