期刊文献+
共找到558,057篇文章
< 1 2 250 >
每页显示 20 50 100
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
1
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
2
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 Additive manufacturing high dynamic MEMS components Multiscale control Process optimization high dynamic verification
在线阅读 下载PDF
Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization 被引量:1
3
作者 Yi Zheng Hao-Ran Zhang +5 位作者 Xiao-Wei Li You-Ran Zhao Zhao-Song Li Ye-Hao Hou Chao Liu Qiong-Hua Wang 《Opto-Electronic Advances》 2025年第6期4-15,共12页
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution... Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest. 展开更多
关键词 compound-eye camera ZOOM high resolution collaborative optimization
在线阅读 下载PDF
High cycle fatigue performance at 650℃and corresponding fracture behaviors of GH4169 joint produced by linear friction welding 被引量:2
4
作者 Shitong MA Xiawei YANG +6 位作者 Zhenguo GUO Yu SU Xinyuan HE Ju LI Jun TAO Bo XIAO Wenya LI 《Chinese Journal of Aeronautics》 2025年第1期622-637,共16页
GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 58... GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains. 展开更多
关键词 high cycle fatigue GH4169 superalloy Linear friction welding Fracture mechanism Microstructure evolution
原文传递
Tourmaline and Mica Chemistry of the Wangxianling Granitoids,South China:Implications for Petrogenesis of Highly Fractionated Granite 被引量:1
5
作者 DUAN Xiaoxia WANG Ziyi +3 位作者 CHEN Bin ZHOU Lingli WANG Zhiqiang CHEN Yanjiao 《Acta Geologica Sinica(English Edition)》 2025年第3期789-805,共17页
Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline a... Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline and bulkrock chemistry of multi-phase Wangxianling granitoids,South China.Compositional variations suggest the coarse-grained muscovite granite is produced from fractional crystallization of the two-mica granite whereas the fine-grained muscovite granite represents a distinct magma pulse.Progressive fractionation of quartz,feldspar and biotite leads to elevated boron and aluminum content in melt which promoted muscovite and tourmaline to crystallize,which promotes two-mica granite evolving towards tourmaline-bearing muscovite granite.Fluid-melt-crystal interaction occurred at the magmatichydrothermal transitional stage and resulted in the textural and chemical zonings of tourmaline and muscovite in finegrained muscovite granite.The rims of both tourmaline and muscovite are characterized by the enrichment of fluid mobile elements such as Li,Mn,Cs and Zn and heavierδ^(11)B values of the tourmaline rims(-15.0‰to-13.6‰)compared to cores(-15.7‰to-14.3‰).Meanwhile,significant M-type REE tetrad effects(TE_(1,3)=1.07-1.18)and low K/Rb ratios(48-52)also correspond to fluid-melt-crystal interaction.This study shows zoned muscovite and tourmaline can be excellent tracers of fractional crystallization and late-stage fluid-melt-crystal interaction in highly evolved magmatic systems. 展开更多
关键词 TOURMALINE MUSCOVITE highly fractionated granite fluid-melt interaction South China
在线阅读 下载PDF
High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing 被引量:2
6
作者 Zhe Li Liang Wang +9 位作者 Yong Yang Chen Liu Baoxian Su Qingda Zhang Zhiwen Li Jiaqi Huang Binbin Wang Liangshun Luo Ruirun Chen Yanqing Su 《Journal of Materials Science & Technology》 2025年第12期131-146,共16页
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo... Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys. 展开更多
关键词 Refractory high entropy alloy OXIDATION Electron beam freeform fabrication Multilayer oxide First principles calculations
原文传递
Mechanical properties of sandstone under in-situ high-temperature and confinement conditions 被引量:1
7
作者 Liyuan Liu Juan Jin +5 位作者 Jiandong Liu Wei Cheng Minghui Zhao Shengwen Luo Yifan Luo Tao Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期778-787,共10页
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro... Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources. 展开更多
关键词 in-situ high temperature mechanical property thermal damage thermomechanical coupling
在线阅读 下载PDF
High-energy-density lithium manganese iron phosphate for lithium-ion batteries:Progresses,challenges,and prospects 被引量:1
8
作者 Bokun Zhang Xiaoyun Wang +5 位作者 Shuai Wang Yan Li Libo Chen Handong Jiao Zhijing Yu Jiguo Tu 《Journal of Energy Chemistry》 2025年第1期1-17,共17页
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered... The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements. 展开更多
关键词 Lithiummanganese iron phosphate high energydensity LITHIUM-IONBATTERIES Reactionmechanism Tap density
在线阅读 下载PDF
Restoration of hydrocarbon generation potential of the highly mature Lower Cambrian Yuertusi Formation source rocks in the Tarim Basin 被引量:2
9
作者 Yao Hu Cheng-Zao Jia +6 位作者 Jun-Qing Chen Xiong-Qi Pang Lin Jiang Chen-Xi Wang Hui-Yi Xiao Cai-Jun Li Yu-Jie Jin 《Petroleum Science》 2025年第2期588-606,共19页
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa... The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin. 展开更多
关键词 Evaluation of resource potential highly mature hydrocarbon source rocks Yuertusi formation Tarim Basin
原文传递
A binary eutectic electrolyte design for high-temperature interface-compatible Zn-ion batteries 被引量:1
10
作者 Guomin Li Wentao Wen +7 位作者 Kefeng Ouyang Yanyi Wang Jianhui Zhu Ming Yang Hongwei Mi Ning Zhao Peixin Zhang Dingtao Ma 《Journal of Energy Chemistry》 2025年第2期587-597,I0012,共12页
The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design c... The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application. 展开更多
关键词 Eutectic electrolyte Solvation structure Dendrite suppression high temperature Zn anode
在线阅读 下载PDF
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
11
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE Thermal cycles high temperature Fracture surface roughness ANISOTROPIC Thermal damage
在线阅读 下载PDF
High-voltage MIM-type aluminum electrolytic capacitors 被引量:1
12
作者 Yuan Guo Shixin Wang +5 位作者 Xianfeng Du Xinkuan Zang Zhongshuai Liang Jun Xiong Ruizhi Wang Zhuo Li 《Journal of Energy Chemistry》 2025年第5期79-90,共12页
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate... Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance. 展开更多
关键词 MIM nanocapacitor Electrolytic capacitor Buffer layer Atomic layer deposition high voltage
在线阅读 下载PDF
Regulation Active Sites of Porous GaN Crystal Via Mn_(3)O_(4)Nanosheets for Advanced High Temperature Energy Storage 被引量:1
13
作者 Songyang Lv Shouzhi Wang +7 位作者 Qirui Zhang Lin Xu Ge Tian Jiaoxian Yu Guodong Wang Lili Li Xiangang Xu Lei Zhang 《Energy & Environmental Materials》 2025年第3期112-121,共10页
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in... Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor. 展开更多
关键词 active sites density functional theory gallium nitride crystal high temperature SUPERCAPACITORS
在线阅读 下载PDF
Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability 被引量:1
14
作者 Zhongying Ji Bingang Xu +5 位作者 Zhiyong Su Xiaochen Wang Yang Lyu Sen Liu Tao Wu Xiaolong Wang 《International Journal of Extreme Manufacturing》 2025年第2期630-639,共10页
Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on... Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on traditional thermal processing or direct ink writing three-dimensional(3D)printing.These methods are not conducive to manufacturing complex structures and present challenges such as time inefficiency,poor accuracy,and the necessity of multiple steps,significantly limiting SR applications.In this study,we developed an SR-based ink suitable for vat photopolymerization 3D printing using a multi-thiol monomer.This ink enables the one-step fabrication of complex architectures with high printing resolution at the micrometer scale,providing excellent mechanical strength and superior chemical stability.Specifically,the optimized 3D printing SR-20 exhibits a tensile stress of 1.96 MPa,an elongation at break of 487.9%,and an elastic modulus of 225.4 kPa.Additionally,the 3D-printed SR samples can withstand various solvents(acetone,toluene,and tetrahydrofuran)and endure temperatures ranging from-50℃ to 180℃,demonstrating superior stability.As a emonstration of the application,we successfully fabricated a series of SR-based soft pneumatic actuators and grippers in a single step with this technology,allowing for free assembly for the first time.This ultraviolet-curable SR,with high printing resolution and exceptional stability performance,has significant potential to enhance the capabilities of 3D printing for applications in soft actuators,robotics,flexible electronics,and medical devices. 展开更多
关键词 3D printing silicone rubber high printing resolution pneumatic actuator
在线阅读 下载PDF
Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries
15
作者 Rui Zhou Rui Liu +4 位作者 Yun-Nuo Li Si-Jie Jiang Tian-Tian Jing Yan-Song Xu Fei-Fei Cao 《电化学(中英文)》 北大核心 2025年第8期34-43,共10页
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type... Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C. 展开更多
关键词 Dual-ion battery Biomass hard carbon Structural regulation high operating voltage high rate
在线阅读 下载PDF
Anisotropy Evolution of Tensile Properties in Laser Powder Bed Fusion-Fabricated Inconel 625 Alloy at High Temperature 被引量:1
16
作者 Jiaqing Liu Libo Zhou +5 位作者 Zeai Peng Boyi Chen Yijie Tan Jian Chen Weiying Huang Cong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期555-569,共15页
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature... This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains. 展开更多
关键词 Laser powder bed fusion Inconel 625 alloy Anisotropy evolution high temperature
原文传递
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
17
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 Polymer non-catalytic reduction high denitration efficiency Low operating cost Waste-to-energy plant
原文传递
Attenuating reductive decomposition of fiuorinated electrolytes for high-voltage lithium metal batteries 被引量:1
18
作者 Zhen-Zhen Dong Jin-Hao Zhang +4 位作者 Lin Zhu Xiao-Zhong Fan Zhen-Guo Liu Yi-Bo Yan Long Kong 《Chinese Chemical Letters》 2025年第4期416-419,共4页
Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. Ho... Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries. 展开更多
关键词 Li metal batteries Solid electrolyte interphase high voltage Fluorinated electrolyte Electrolyte decomposition
原文传递
Enhanced 3D printing and crack control in melt-grown eutectic ceramic composites with high-entropy alloy doping 被引量:1
19
作者 Zhonglin Shen Haijun Su +10 位作者 Minghui Yu Yinuo Guo Yuan Liu Hao Jiang Xiang Li Dong Dong Peixin Yang Jiatong Yao Min Guo Zhuo Zhang Wei Ren 《Journal of Materials Science & Technology》 2025年第6期64-78,共15页
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin... As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing. 展开更多
关键词 Laser powder bed fusion Eutectic ceramic composite high entropy alloy doping
原文传递
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
20
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte high voltage Layered oxide cathode Flame retardant
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部