SnO2-ln2O3 hierarchical microspheres were prepared by the hydrothermal and solvothermal method. The morphology, phase crystallinity of the obtained SnO2-In203 were measured by X-ray diffraetion(XRD), scan electron m...SnO2-ln2O3 hierarchical microspheres were prepared by the hydrothermal and solvothermal method. The morphology, phase crystallinity of the obtained SnO2-In203 were measured by X-ray diffraetion(XRD), scan electron microscopy(SEM), respectively. A room temperature ozone sensor based on SnO2-In2O3 hierarchical microspheres was fabricated and investigated. The gas sensing properties of the sensor using SnO2-In2O3 strongly depended on the proportion of SnO2 and In2O3. The sensitivity and response/recovery speed were greatly enhanced by UV illumination. A gas sensing mechanism related to oxygen defect was suggested.展开更多
Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing...Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.展开更多
为改善SnO_2-Fe_2O_3的电化学性能,通过一步水热法合成SnO_2-Fe_2O_3/rGO纳米复合材料,采用XRD、SEM、电化学工作站和蓝电电池测试系统,研究rGO加入量对SnO_2-Fe_2O_3/rGO复合材料的结构和电化学性能的影响.结果表明:rGO的掺入能很好地...为改善SnO_2-Fe_2O_3的电化学性能,通过一步水热法合成SnO_2-Fe_2O_3/rGO纳米复合材料,采用XRD、SEM、电化学工作站和蓝电电池测试系统,研究rGO加入量对SnO_2-Fe_2O_3/rGO复合材料的结构和电化学性能的影响.结果表明:rGO的掺入能很好地提高SnO_2-Fe_2O_3循环稳定性和倍率性能;对于SnO_2-Fe_2O_3/rGO50复合材料,在160 m A/g的电流密度下,100次循环后,放电比容量仍然保持596.9 m Ah/g,库仑效率为98%;即使在1 A/g的电流密度下,依然有366.6 m Ah/g的平均放电比容量.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.60906036,61074172,61134010)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(No.IRT1017)
文摘SnO2-ln2O3 hierarchical microspheres were prepared by the hydrothermal and solvothermal method. The morphology, phase crystallinity of the obtained SnO2-In203 were measured by X-ray diffraetion(XRD), scan electron microscopy(SEM), respectively. A room temperature ozone sensor based on SnO2-In2O3 hierarchical microspheres was fabricated and investigated. The gas sensing properties of the sensor using SnO2-In2O3 strongly depended on the proportion of SnO2 and In2O3. The sensitivity and response/recovery speed were greatly enhanced by UV illumination. A gas sensing mechanism related to oxygen defect was suggested.
基金the financial support from the National Natural Science Foundation of China(No.20973022 and No.11472048)the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)(Serial No.33600000-14-ZC0607-0006)
文摘Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.
文摘为改善SnO_2-Fe_2O_3的电化学性能,通过一步水热法合成SnO_2-Fe_2O_3/rGO纳米复合材料,采用XRD、SEM、电化学工作站和蓝电电池测试系统,研究rGO加入量对SnO_2-Fe_2O_3/rGO复合材料的结构和电化学性能的影响.结果表明:rGO的掺入能很好地提高SnO_2-Fe_2O_3循环稳定性和倍率性能;对于SnO_2-Fe_2O_3/rGO50复合材料,在160 m A/g的电流密度下,100次循环后,放电比容量仍然保持596.9 m Ah/g,库仑效率为98%;即使在1 A/g的电流密度下,依然有366.6 m Ah/g的平均放电比容量.