In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage curre...Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.展开更多
Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding str...Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding structure,crystallographic structure,and electrical properties of Y-doped HfO2 films are investigated.The x-ray photoelectron spectrum(XPS) indicates that the core level peak positions of Hf 4 f and O 1 s shift toward lower energy due to the structure change after Y doping.The depth profiling of XPS shows that the surface of the film is completely oxidized while the oxygen deficiency emerges after the stripping depths have increased.The x-ray diffraction and high resolution transmission electron microscopy(HRTEM) analyses reveal the evolution from monoclinic HfO2 phase towards stabilized cubic HfO2 phase and the preferred orientation of(111) appears with increasing Y content,while pure HfO2 shows the monoclinic phase only.The leakage current and permittivity are determined as a function of the Y content.The best combination of low leakage current of 10-7 A/cm^2 at 1 V and a highest permittivity value of 29 is achieved when the doping ratio of Y increases to 9 mol%.A correlation among Y content,phase evolution and electrical properties of Y-doped HfO2 ultra-thin film is investigated.展开更多
The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al–Ta N/HfO2/Si ...The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al–Ta N/HfO2/Si O2/p-Si are also characterized. After N2-plasma treatment, the nitrogen atoms are incorporated into HfO2 film and may passivate the oxygen vacancy states. The surface roughness of HfO2 film can also be reduced. Those improvements of HfO2 film lead to a smaller hysteresis and lower leakage current density of the MOS capacitor. The N2-plasma is introduced into Au nanocrystal(NC) nonvolatile memory to treat the HfO2 blocking layer. For the N2-plasma treated device, it shows a better retention characteristic and is twice as large in the memory window than that for the no N2-plasma treated device. It can be concluded that the N2-plasma treatment method can be applied to future nonvolatile memory applications.展开更多
The influence of water vapor content in high vacuum chamber during the coating process on physical properties of HfO2 films was investigated. Coatings were deposited on BK7 substrates by electron beam evaporation and ...The influence of water vapor content in high vacuum chamber during the coating process on physical properties of HfO2 films was investigated. Coatings were deposited on BK7 substrates by electron beam evaporation and photoelectric maximum control method. An in situ residual gas analyzer (RGA) was used to monitor the residual gas composition in the vacuum chamber. The optical properties, microstructure, absorption and laser-induced damage threshold (LIDT) of the samples were characterized by Lambda 900 spectrophotometer, X-ray diffraction (XRD), surface thermal lensing (STL) technique and 1064-nm Qswitched pulsed laser at a pulse duration of 12 ns respectively. It was found that a cold trap is an effective equipment to suppress water vapor in the vacuum chamber during the pumping process, and the coatings deposited in the vacuum atmosphere with relatively low water vapor composition show higher refractive index and smaller grain size. Meanwhile, the higher LIDT value is corresponding to lower absorbance.展开更多
Nanosecond single- and multiple-pulse laser damage studies on HfOffSiO2 high-reflection (HR) coatings are performed at 532 nm. For single-pulse irradiation, the damage is attributed to the defects and the electric i...Nanosecond single- and multiple-pulse laser damage studies on HfOffSiO2 high-reflection (HR) coatings are performed at 532 nm. For single-pulse irradiation, the damage is attributed to the defects and the electric intensity distribution in the multilayer thin films. When the defect density in the irradiated area is high, delami- nation is observed. Other than the 1064 nm laser damage, the plasma scalding of the 532 nm laser damage is not pits-centered for normal incidence, and the size of the plasma scalding has no relation to the defect density and position, but increases with the laser fluence. For multiple-pulse irradiations, some damage sites show deeper precursors than those from the single-shot irradiation due to the accumulation effects. The cumulative laser- induced damages behave as pits without the presence of plasma scalding, which is unaffected by the laser fluence and shot numbers. The damage morphologies and depth information both confirm the fatigue effect of a HfO2/SiO2 HR coating under 532 nm laser irradiation.展开更多
Abstract: The undoped and Yb-doped HfO2 thin films were deposited on p-type single crystal St(100) substrates using RF magnetron sputtering method. The structure and electrical properties were investigated as a fun...Abstract: The undoped and Yb-doped HfO2 thin films were deposited on p-type single crystal St(100) substrates using RF magnetron sputtering method. The structure and electrical properties were investigated as a function of doping concentrations. The results showed that the presence of Yb could stabilize HfO2 in cubic phase. The dielectric constant was enhanced after in- troducing Yb3+ ions into the HfO2 host. Compared with undoped HfO2 thin film, the Yb-doped l-IfO2 thin film exhibited a low leakage current. The silicate reaction between rare earth ions and SiO2 layers was used to eliminate interfacial silica and form a stable interface.展开更多
The Atomic Layer Deposition process(ALD)is widely used in FinFET,3D-NAND and other important technologies because of its self-limiting signature and low growth temperature.In recent years,the development of computer e...The Atomic Layer Deposition process(ALD)is widely used in FinFET,3D-NAND and other important technologies because of its self-limiting signature and low growth temperature.In recent years,the development of computer enables chances for ALD process simulation in order to improve the process R&D efficiency.In this paper,steady state theory and vacuum pump theory are implemented to develop the growth rate algorithm of atomic layer deposition.The dynamic evolution of the deposition profile is realized based on cellular automata method,and fits the relationship between temperature and growth rate in HfO2 deposition.The model accuracy and simulation results are verified with high reliability.Based on the simulation results of this model,the influence of different substrate size and environmental dose on growth rate of pore structure is studied and analyzed.In the case of deep hole,high depth-to-width ratio hole,or when the gas entry time is below saturation,the growth rate decreases at the pore bottom.Meanwhile,the simulation considering the angle-of-inclination of the hole’s tapered sidewall indicates that the greater the angle,the better the distribution of flux.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金Project supported by the Foundation of the Education Commission of Shanghai Municipality (Grant Nos.07ZZ14, 08SG41)the National Natural Science Foundation of China (Grant No.50711130241)the Shanghai Rising Star Program (GrantNo.08QH14008)
文摘Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272034 and 51672032)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT17ZD211)
文摘Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding structure,crystallographic structure,and electrical properties of Y-doped HfO2 films are investigated.The x-ray photoelectron spectrum(XPS) indicates that the core level peak positions of Hf 4 f and O 1 s shift toward lower energy due to the structure change after Y doping.The depth profiling of XPS shows that the surface of the film is completely oxidized while the oxygen deficiency emerges after the stripping depths have increased.The x-ray diffraction and high resolution transmission electron microscopy(HRTEM) analyses reveal the evolution from monoclinic HfO2 phase towards stabilized cubic HfO2 phase and the preferred orientation of(111) appears with increasing Y content,while pure HfO2 shows the monoclinic phase only.The leakage current and permittivity are determined as a function of the Y content.The best combination of low leakage current of 10-7 A/cm^2 at 1 V and a highest permittivity value of 29 is achieved when the doping ratio of Y increases to 9 mol%.A correlation among Y content,phase evolution and electrical properties of Y-doped HfO2 ultra-thin film is investigated.
基金Supported by Chinese National Foundation of High Technology (2008AA8041606)Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (07DZ22302)+1 种基金Shanghai Educational Development Foundation (2007CG26)Program for Young Excellent Talents in Tongji University (2006KJ052)
基金supported by the High Level Talent Project of Xiamen University of Technology,China(Grant Nos.YKJ16012R and YKJ16016R)the National Natural Science Foundation of China(Grant No.51702271)
文摘The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al–Ta N/HfO2/Si O2/p-Si are also characterized. After N2-plasma treatment, the nitrogen atoms are incorporated into HfO2 film and may passivate the oxygen vacancy states. The surface roughness of HfO2 film can also be reduced. Those improvements of HfO2 film lead to a smaller hysteresis and lower leakage current density of the MOS capacitor. The N2-plasma is introduced into Au nanocrystal(NC) nonvolatile memory to treat the HfO2 blocking layer. For the N2-plasma treated device, it shows a better retention characteristic and is twice as large in the memory window than that for the no N2-plasma treated device. It can be concluded that the N2-plasma treatment method can be applied to future nonvolatile memory applications.
文摘The influence of water vapor content in high vacuum chamber during the coating process on physical properties of HfO2 films was investigated. Coatings were deposited on BK7 substrates by electron beam evaporation and photoelectric maximum control method. An in situ residual gas analyzer (RGA) was used to monitor the residual gas composition in the vacuum chamber. The optical properties, microstructure, absorption and laser-induced damage threshold (LIDT) of the samples were characterized by Lambda 900 spectrophotometer, X-ray diffraction (XRD), surface thermal lensing (STL) technique and 1064-nm Qswitched pulsed laser at a pulse duration of 12 ns respectively. It was found that a cold trap is an effective equipment to suppress water vapor in the vacuum chamber during the pumping process, and the coatings deposited in the vacuum atmosphere with relatively low water vapor composition show higher refractive index and smaller grain size. Meanwhile, the higher LIDT value is corresponding to lower absorbance.
基金supported by the National Natural Science Foundation of China under Grant Nos.11104293and 61308021
文摘Nanosecond single- and multiple-pulse laser damage studies on HfOffSiO2 high-reflection (HR) coatings are performed at 532 nm. For single-pulse irradiation, the damage is attributed to the defects and the electric intensity distribution in the multilayer thin films. When the defect density in the irradiated area is high, delami- nation is observed. Other than the 1064 nm laser damage, the plasma scalding of the 532 nm laser damage is not pits-centered for normal incidence, and the size of the plasma scalding has no relation to the defect density and position, but increases with the laser fluence. For multiple-pulse irradiations, some damage sites show deeper precursors than those from the single-shot irradiation due to the accumulation effects. The cumulative laser- induced damages behave as pits without the presence of plasma scalding, which is unaffected by the laser fluence and shot numbers. The damage morphologies and depth information both confirm the fatigue effect of a HfO2/SiO2 HR coating under 532 nm laser irradiation.
基金Project supported by the National 111 Project(B08040)National Natural Science Foundation of China(51172186,61376091)the Natural Science Foundation of Shaanxi province(2012JM6012)
文摘Abstract: The undoped and Yb-doped HfO2 thin films were deposited on p-type single crystal St(100) substrates using RF magnetron sputtering method. The structure and electrical properties were investigated as a function of doping concentrations. The results showed that the presence of Yb could stabilize HfO2 in cubic phase. The dielectric constant was enhanced after in- troducing Yb3+ ions into the HfO2 host. Compared with undoped HfO2 thin film, the Yb-doped l-IfO2 thin film exhibited a low leakage current. The silicate reaction between rare earth ions and SiO2 layers was used to eliminate interfacial silica and form a stable interface.
文摘The Atomic Layer Deposition process(ALD)is widely used in FinFET,3D-NAND and other important technologies because of its self-limiting signature and low growth temperature.In recent years,the development of computer enables chances for ALD process simulation in order to improve the process R&D efficiency.In this paper,steady state theory and vacuum pump theory are implemented to develop the growth rate algorithm of atomic layer deposition.The dynamic evolution of the deposition profile is realized based on cellular automata method,and fits the relationship between temperature and growth rate in HfO2 deposition.The model accuracy and simulation results are verified with high reliability.Based on the simulation results of this model,the influence of different substrate size and environmental dose on growth rate of pore structure is studied and analyzed.In the case of deep hole,high depth-to-width ratio hole,or when the gas entry time is below saturation,the growth rate decreases at the pore bottom.Meanwhile,the simulation considering the angle-of-inclination of the hole’s tapered sidewall indicates that the greater the angle,the better the distribution of flux.