Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network...Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models.Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully.Most existing initialization methods mainly focus on gradient flow-related problems,such as gradient vanishing or exploding,or other existing approaches that require extra models that do not consider our setting,which is more practical.To address these problems,we suggest employing gradient-free heuristic methods to initialize the weights of the final new-added fully connected layer in neural networks froma small set of training data with fewer classes.The approach relies on partitioning the output values from pre-trained models for a small set into two separate intervals determined by the targets.This process is framed as an optimization problem for each output neuron and class.The optimization selects the highest values as weights,considering their direction towards the respective classes.Furthermore,empirical 145 experiments involve a variety of neural networkmodels tested acrossmultiple benchmarks and domains,occasionally yielding accuracies comparable to those achieved with gradient descent methods by using only small subsets.展开更多
Owing to extensive applications in many fields,the synchronization problem has been widely investigated in multi-agent systems.The synchronization for multi-agent systems is a pivotal issue,which means that under the ...Owing to extensive applications in many fields,the synchronization problem has been widely investigated in multi-agent systems.The synchronization for multi-agent systems is a pivotal issue,which means that under the designed control policy,the output of systems or the state of each agent can be consistent with the leader.The purpose of this paper is to investigate a heuristic dynamic programming(HDP)-based learning tracking control for discrete-time multi-agent systems to achieve synchronization while considering disturbances in systems.Besides,due to the difficulty of solving the coupled Hamilton–Jacobi–Bellman equation analytically,an improved HDP learning control algorithm is proposed to realize the synchronization between the leader and all following agents,which is executed by an action-critic neural network.The action and critic neural network are utilized to learn the optimal control policy and cost function,respectively,by means of introducing an auxiliary action network.Finally,two numerical examples and a practical application of mobile robots are presented to demonstrate the control performance of the HDP-based learning control algorithm.展开更多
We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new conden...We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.展开更多
随着智能体在复杂动态环境中的路径规划需求日益增长,传统Q-Learning算法在收敛速度、避障效率及全局优化能力上的局限性逐渐凸显。针对Q-Learning算法在路径规划中的不足,本文提出一种结合动态学习率、自适应探索率与蒙特卡洛树搜索(Mo...随着智能体在复杂动态环境中的路径规划需求日益增长,传统Q-Learning算法在收敛速度、避障效率及全局优化能力上的局限性逐渐凸显。针对Q-Learning算法在路径规划中的不足,本文提出一种结合动态学习率、自适应探索率与蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)的改进方法。首先,通过引入指数衰减的动态学习率与探索率,以平衡算法在训练初期的探索能力与后期的策略稳定性;其次,将MCTS与Q-Learning结合,利用MCTS的全局搜索特性优化Q值更新过程;此外,融合启发式函数以改进奖励机制,引导智能体更高效地逼近目标。实验结果表明,改进算法的平均步数、收敛速度、稳定性等相较于传统算法提升显著,本研究为复杂环境下的智能体路径规划提供了一种高效、鲁棒的解决方案。展开更多
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic...The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains.展开更多
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge t...This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.展开更多
We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee...We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee subjects.Specifically,our actor-critic based RL provides tracking control of a robotic knee prosthesis to mimic the intact knee profile.This is a significant advance from our previous RL based automatic tuning of prosthesis control parameters which have centered on regulation control with a designer prescribed robotic knee profile as the target.In addition to presenting the tracking control algorithm based on direct heuristic dynamic programming(dHDP),we provide a control performance guarantee including the case of constrained inputs.We show that our proposed tracking control possesses several important properties,such as weight convergence of the learning networks,Bellman(sub)optimality of the cost-to-go value function and control input,and practical stability of the human-robot system.We further provide a systematic simulation of the proposed tracking control using a realistic human-robot system simulator,the OpenSim,to emulate how the dHDP enables level ground walking,walking on different terrains and at different paces.These results show that our proposed dHDP based tracking control is not only theoretically suitable,but also practically useful.展开更多
The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interes...The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interesting patterns and obtain predictive models,the use of these algorithms comes with a great responsibility,as an incomplete or unbalanced set of training data or an unproper interpretation of the models’outcomes could result in misleading conclusions that ultimately could become very dangerous.For these reasons,it is important to rely on expert knowledge when applying these methods.However,not every user can count on this specific expertise;non-AIexpert users could also benefit from applying these powerful algorithms to their domain problems,but they need basic guidelines to obtain themost out of AI models.The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features.The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering.As a result,9 papers that tackle AI algorithmrecommendation through tangible and traceable rules and heuristics were collected.The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms.展开更多
The use of mobile phone technologies in the education sector is getting more attention nowadays. This is due to the advancement of technologies equipped in majority of the mobile phones which makes the devices become ...The use of mobile phone technologies in the education sector is getting more attention nowadays. This is due to the advancement of technologies equipped in majority of the mobile phones which makes the devices become more capable of supporting the learning and teaching activities. Mobile learning (m-learning) is a learning tool which can be run on mobile devices. It can be considered as an enhancement to the electronic learning (e-learning). M-learning overcomes several limitations of e-learning especially in term of mobility. It provides more independent way of learning whereby learners can use the application to do the learning activities at anytime and any place. However, as with other learning and teaching applications, applications to be developed for mobile learning must also be developed based on certain learning theories and guidelines in order for them to be effective as well as usable. Therefore, in this paper, the development process of a mobile learning course content application called Mobile System Analysis and Design (MOSAD) as a revision tool will be shared and its testing's conduct and results will also be presented and discussed. MOSAD was developed with the content of a topic from the System Analysis and Design (SAD) course conducted at Universiti Teknologi PETRONAS (UTP). A heuristic test involving 5 experts in the area of Human Computer Interaction (HCI) were conducted after the first version of MOSAD was completed to strengthen its functionality and usability, followed by a Post Test Quasi Experimental Design which was conducted to 116 UTP second year students who took the SAD course to test the effectiveness and usability of MOSAD after it was revised. As a result from the post test, the students who had used MOSAD (66 out of the 116 students) as their revision tool for answering ten quiz questions obtained a mean score of 7.7576 as compared to 5.160 obtained by the other group of students (50 out of the 116 students) who used traditional methods of revision. Besides, usability test which tested on consistency, leamability, flexibility, minimal action and minimal memory load of MOSAD gave results above 3.5 for each metric based on the rating of 1 to 5. Thus, both results indicate that MOSAD is effective and usable as a revision tool for the higher education students.展开更多
Control of the fed-batch ethanol fermentation processes to produce maximum product ethanol is one of the key issues in the bioreactor system.However,ethanol fermentation processes exhibit complex behavior and nonlinea...Control of the fed-batch ethanol fermentation processes to produce maximum product ethanol is one of the key issues in the bioreactor system.However,ethanol fermentation processes exhibit complex behavior and nonlinear dynamics with respect to the cell mass,substrate,feed-rate,etc.An improved dual heuristic programming algorithm based on the least squares temporal difference with gradient correction(LSTDC) algorithm(LSTDC-DHP) is proposed to solve the learning control problem of a fed-batch ethanol fermentation process.As a new algorithm of adaptive critic designs,LSTDC-DHP is used to realize online learning control of chemical dynamical plants,where LSTDC is commonly employed to approximate the value functions.Application of the LSTDC-DHP algorithm to ethanol fermentation process can realize efficient online learning control in continuous spaces.Simulation results demonstrate the effectiveness of LSTDC-DHP,and show that LSTDC-DHP can obtain the near-optimal feed rate trajectory faster than other-based algorithms.展开更多
Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structu...Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers.展开更多
The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling c...The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.展开更多
针对应急物资需求与物流配送之间不匹配的问题,研究了在需求不确定情景下,如何同时实现应急物资中心选址和车辆路径规划优化的问题。首先,采用三角模糊数刻画需求量,构建应急选址路径模型;随后,将竞争深度Q网络(dueling deep Q network,...针对应急物资需求与物流配送之间不匹配的问题,研究了在需求不确定情景下,如何同时实现应急物资中心选址和车辆路径规划优化的问题。首先,采用三角模糊数刻画需求量,构建应急选址路径模型;随后,将竞争深度Q网络(dueling deep Q network,dueling DQN)算法和双深度Q网络(double deep Q network,DDQN)算法的优点融入超启发式算法的高层选择策略中,提出一种基于强化学习的超启发式算法。该算法利用其学习能力对底层启发式算子的性能进行评估,并赋予启发式算子相应的奖惩值;然后,结合奖惩值与改进的模拟退火接收机制,引导底层算子在解空间中搜索优质解。同时,设计了一种高效的编码方式来提高算法的效率。最后,通过实验验证了所提算法的有效性和鲁棒性,该算法的总体求解效果优于对比算法。展开更多
基金supported by the BK21 FOUR project(AI-driven Convergence Software Education Research Program)funded by the Ministry of Education,School of Computer Science and Engineering,Kyungpook National University,Republic of Korea(4120240214871)supported by the New Faculty Start Up Fund from LSU Health Sciences New Orleans,LA,USA.
文摘Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models.Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully.Most existing initialization methods mainly focus on gradient flow-related problems,such as gradient vanishing or exploding,or other existing approaches that require extra models that do not consider our setting,which is more practical.To address these problems,we suggest employing gradient-free heuristic methods to initialize the weights of the final new-added fully connected layer in neural networks froma small set of training data with fewer classes.The approach relies on partitioning the output values from pre-trained models for a small set into two separate intervals determined by the targets.This process is framed as an optimization problem for each output neuron and class.The optimization selects the highest values as weights,considering their direction towards the respective classes.Furthermore,empirical 145 experiments involve a variety of neural networkmodels tested acrossmultiple benchmarks and domains,occasionally yielding accuracies comparable to those achieved with gradient descent methods by using only small subsets.
基金This work was supported by Tianjin Natural Science Foundation under Grant 20JCYBJC00880Beijing key Laboratory Open Fund of Long-Life Technology of Precise Rotation and Transmission MechanismsGuangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control.
文摘Owing to extensive applications in many fields,the synchronization problem has been widely investigated in multi-agent systems.The synchronization for multi-agent systems is a pivotal issue,which means that under the designed control policy,the output of systems or the state of each agent can be consistent with the leader.The purpose of this paper is to investigate a heuristic dynamic programming(HDP)-based learning tracking control for discrete-time multi-agent systems to achieve synchronization while considering disturbances in systems.Besides,due to the difficulty of solving the coupled Hamilton–Jacobi–Bellman equation analytically,an improved HDP learning control algorithm is proposed to realize the synchronization between the leader and all following agents,which is executed by an action-critic neural network.The action and critic neural network are utilized to learn the optimal control policy and cost function,respectively,by means of introducing an auxiliary action network.Finally,two numerical examples and a practical application of mobile robots are presented to demonstrate the control performance of the HDP-based learning control algorithm.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0403301, 2017YFB0503301, and2018YFB0504302)the National Natural Science Foundation of China (Grant Nos. 11991073, 61975229, and Y8JC011L51)+2 种基金the Key Program of CAS (Grant No. XDB17030500)the Civil Space Project (Grant No. D040301)the Science Challenge Project (Grant No. TZ2018005)。
文摘We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.
文摘随着智能体在复杂动态环境中的路径规划需求日益增长,传统Q-Learning算法在收敛速度、避障效率及全局优化能力上的局限性逐渐凸显。针对Q-Learning算法在路径规划中的不足,本文提出一种结合动态学习率、自适应探索率与蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)的改进方法。首先,通过引入指数衰减的动态学习率与探索率,以平衡算法在训练初期的探索能力与后期的策略稳定性;其次,将MCTS与Q-Learning结合,利用MCTS的全局搜索特性优化Q值更新过程;此外,融合启发式函数以改进奖励机制,引导智能体更高效地逼近目标。实验结果表明,改进算法的平均步数、收敛速度、稳定性等相较于传统算法提升显著,本研究为复杂环境下的智能体路径规划提供了一种高效、鲁棒的解决方案。
基金funded by Ministry of Higher Education(MoHE)Malaysia,under Transdisciplinary Research Grant Scheme(TRGS/1/2019/UKM/01/4/2).
文摘The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains.
基金the National Key Research and Development Program of China(2021ZD0112302)the National Natural Science Foundation of China(62222301,61890930-5,62021003)the Beijing Natural Science Foundation(JQ19013).
文摘This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.
基金This work was partly supported by the National Science Foundation(1563921,1808752,1563454,1808898).
文摘We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee subjects.Specifically,our actor-critic based RL provides tracking control of a robotic knee prosthesis to mimic the intact knee profile.This is a significant advance from our previous RL based automatic tuning of prosthesis control parameters which have centered on regulation control with a designer prescribed robotic knee profile as the target.In addition to presenting the tracking control algorithm based on direct heuristic dynamic programming(dHDP),we provide a control performance guarantee including the case of constrained inputs.We show that our proposed tracking control possesses several important properties,such as weight convergence of the learning networks,Bellman(sub)optimality of the cost-to-go value function and control input,and practical stability of the human-robot system.We further provide a systematic simulation of the proposed tracking control using a realistic human-robot system simulator,the OpenSim,to emulate how the dHDP enables level ground walking,walking on different terrains and at different paces.These results show that our proposed dHDP based tracking control is not only theoretically suitable,but also practically useful.
基金funded by the Spanish Government Ministry of Economy and Competitiveness through the DEFINES Project Grant No. (TIN2016-80172-R)the Ministry of Science and Innovation through the AVisSA Project Grant No. (PID2020-118345RBI00)supported by the Spanish Ministry of Education and Vocational Training under an FPU Fellowship (FPU17/03276).
文摘The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interesting patterns and obtain predictive models,the use of these algorithms comes with a great responsibility,as an incomplete or unbalanced set of training data or an unproper interpretation of the models’outcomes could result in misleading conclusions that ultimately could become very dangerous.For these reasons,it is important to rely on expert knowledge when applying these methods.However,not every user can count on this specific expertise;non-AIexpert users could also benefit from applying these powerful algorithms to their domain problems,but they need basic guidelines to obtain themost out of AI models.The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features.The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering.As a result,9 papers that tackle AI algorithmrecommendation through tangible and traceable rules and heuristics were collected.The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms.
文摘The use of mobile phone technologies in the education sector is getting more attention nowadays. This is due to the advancement of technologies equipped in majority of the mobile phones which makes the devices become more capable of supporting the learning and teaching activities. Mobile learning (m-learning) is a learning tool which can be run on mobile devices. It can be considered as an enhancement to the electronic learning (e-learning). M-learning overcomes several limitations of e-learning especially in term of mobility. It provides more independent way of learning whereby learners can use the application to do the learning activities at anytime and any place. However, as with other learning and teaching applications, applications to be developed for mobile learning must also be developed based on certain learning theories and guidelines in order for them to be effective as well as usable. Therefore, in this paper, the development process of a mobile learning course content application called Mobile System Analysis and Design (MOSAD) as a revision tool will be shared and its testing's conduct and results will also be presented and discussed. MOSAD was developed with the content of a topic from the System Analysis and Design (SAD) course conducted at Universiti Teknologi PETRONAS (UTP). A heuristic test involving 5 experts in the area of Human Computer Interaction (HCI) were conducted after the first version of MOSAD was completed to strengthen its functionality and usability, followed by a Post Test Quasi Experimental Design which was conducted to 116 UTP second year students who took the SAD course to test the effectiveness and usability of MOSAD after it was revised. As a result from the post test, the students who had used MOSAD (66 out of the 116 students) as their revision tool for answering ten quiz questions obtained a mean score of 7.7576 as compared to 5.160 obtained by the other group of students (50 out of the 116 students) who used traditional methods of revision. Besides, usability test which tested on consistency, leamability, flexibility, minimal action and minimal memory load of MOSAD gave results above 3.5 for each metric based on the rating of 1 to 5. Thus, both results indicate that MOSAD is effective and usable as a revision tool for the higher education students.
基金Supported by the National Natural Science Foundation of China(61573052)
文摘Control of the fed-batch ethanol fermentation processes to produce maximum product ethanol is one of the key issues in the bioreactor system.However,ethanol fermentation processes exhibit complex behavior and nonlinear dynamics with respect to the cell mass,substrate,feed-rate,etc.An improved dual heuristic programming algorithm based on the least squares temporal difference with gradient correction(LSTDC) algorithm(LSTDC-DHP) is proposed to solve the learning control problem of a fed-batch ethanol fermentation process.As a new algorithm of adaptive critic designs,LSTDC-DHP is used to realize online learning control of chemical dynamical plants,where LSTDC is commonly employed to approximate the value functions.Application of the LSTDC-DHP algorithm to ethanol fermentation process can realize efficient online learning control in continuous spaces.Simulation results demonstrate the effectiveness of LSTDC-DHP,and show that LSTDC-DHP can obtain the near-optimal feed rate trajectory faster than other-based algorithms.
基金Supported by the National Key Research and Development Program of China(No.2016YFB0201305)National Science and Technology Major Project(No.2013ZX0102-8001-001-001)National Natural Science Foundation of China(No.91430218,31327901,61472395,61272134,61432018)
文摘Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers.
文摘The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.
文摘针对应急物资需求与物流配送之间不匹配的问题,研究了在需求不确定情景下,如何同时实现应急物资中心选址和车辆路径规划优化的问题。首先,采用三角模糊数刻画需求量,构建应急选址路径模型;随后,将竞争深度Q网络(dueling deep Q network,dueling DQN)算法和双深度Q网络(double deep Q network,DDQN)算法的优点融入超启发式算法的高层选择策略中,提出一种基于强化学习的超启发式算法。该算法利用其学习能力对底层启发式算子的性能进行评估,并赋予启发式算子相应的奖惩值;然后,结合奖惩值与改进的模拟退火接收机制,引导底层算子在解空间中搜索优质解。同时,设计了一种高效的编码方式来提高算法的效率。最后,通过实验验证了所提算法的有效性和鲁棒性,该算法的总体求解效果优于对比算法。