The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates ...The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.展开更多
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d...Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
加速邻近梯度算法是求解张量补全问题的经典方法之一,但将该算法应用到Hankel结构张量补全时,无法保证补全的张量能够保持Hankel结构。因此,本文基于加速邻近梯度算法的框架,提出了一种保Hankel结构的加速邻近梯度算法。该算法在每次迭...加速邻近梯度算法是求解张量补全问题的经典方法之一,但将该算法应用到Hankel结构张量补全时,无法保证补全的张量能够保持Hankel结构。因此,本文基于加速邻近梯度算法的框架,提出了一种保Hankel结构的加速邻近梯度算法。该算法在每次迭代中利用l∞-模投影算子生成Hankel结构张量。在理论上,本文证明了新算法在合理假设条件下的收敛性。最后,通过随机Hankel张量补全与图像修复实例的数值实验验证了新算法的有效性。The accelerated proximal gradient algorithm is one of the classic methods for solving tensor completion problems. However, when applied to Hankel structured tensor completion, it cannot guarantee that the completed tensor can maintain the Hankel structure. Therefore, based on the framework of the accelerated proximal gradient algorithm, this paper proposes a new accelerated proximal gradient algorithm that can preserve the Hankel structure. In each iteration of the algorithm, utilizing the l∞-norm projection and the fast singular value thresholding method ensures that the generated tensor preserves the Hankel structure. Moreover, this paper proves the convergence of the new algorithm under reasonable assumptions. Finally, the effectiveness of the new algorithm is verified through numerical experiments of random Hankel tensor completion and image restoration examples.展开更多
Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the eva...Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the la...Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
本文给出了Fock空间上两个Hankel算子乘积的有界性的必要条件描述,且结合反例证明此条件是两个Hankel算子乘积的有界性的必要不充分条件。In this paper, we give a description of the necessary condition for boundedness of the pro...本文给出了Fock空间上两个Hankel算子乘积的有界性的必要条件描述,且结合反例证明此条件是两个Hankel算子乘积的有界性的必要不充分条件。In this paper, we give a description of the necessary condition for boundedness of the product of two Hankel operators on Fock space, and prove that this condition is a necessary and insufficient condition for boundedness of the product of two Hankel operators.展开更多
In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
本文主要研究了Fock空间Fαp上小Hankel算子hφ的有界性和紧性,得到了hφ在Fαp上有界的充分必要条件是其符号φ属于Fock空间Fα2∞;hφ在Fαp上紧的充分必要条件是φ属于fα2∞。This paper mainly studies the boundedness and compac...本文主要研究了Fock空间Fαp上小Hankel算子hφ的有界性和紧性,得到了hφ在Fαp上有界的充分必要条件是其符号φ属于Fock空间Fα2∞;hφ在Fαp上紧的充分必要条件是φ属于fα2∞。This paper mainly studies the boundedness and compactness of the small Hankel operator hφon Fock space Fαp. It is found that the necessary and sufficient condition for hφbeing bounded on Fαpis that its symbol φbelongs to Fock space Fα2∞;the necessary and sufficient condition for hφbeing compact on Fαpis that φbelongs to fα2∞.展开更多
基金supported by grants PID2020-120308RB-I00 and PID2023-147802OB-I00 funded by MICIU/AEI/10.13039/501100011033FEDER,UE,by Aligning Science Across Parkinson’s(ref.ASAP-020505)through the Michael J.Fox Foundation for Parkinson’s Research+1 种基金by CiberNed Intramural Collaborative Projects(ref.PI2020/09)by the Spanish Fundación Mutua Madrile?a de Investigación Médica(to JLL)。
文摘The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.
基金The work described in this paper was fully supported by a grant from Hong Kong Metropolitan University(RIF/2021/05).
文摘Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
文摘加速邻近梯度算法是求解张量补全问题的经典方法之一,但将该算法应用到Hankel结构张量补全时,无法保证补全的张量能够保持Hankel结构。因此,本文基于加速邻近梯度算法的框架,提出了一种保Hankel结构的加速邻近梯度算法。该算法在每次迭代中利用l∞-模投影算子生成Hankel结构张量。在理论上,本文证明了新算法在合理假设条件下的收敛性。最后,通过随机Hankel张量补全与图像修复实例的数值实验验证了新算法的有效性。The accelerated proximal gradient algorithm is one of the classic methods for solving tensor completion problems. However, when applied to Hankel structured tensor completion, it cannot guarantee that the completed tensor can maintain the Hankel structure. Therefore, based on the framework of the accelerated proximal gradient algorithm, this paper proposes a new accelerated proximal gradient algorithm that can preserve the Hankel structure. In each iteration of the algorithm, utilizing the l∞-norm projection and the fast singular value thresholding method ensures that the generated tensor preserves the Hankel structure. Moreover, this paper proves the convergence of the new algorithm under reasonable assumptions. Finally, the effectiveness of the new algorithm is verified through numerical experiments of random Hankel tensor completion and image restoration examples.
基金primarily supported by the National Key R&D Program of China[grant number 2021YFC3000904]the Jiangsu Provincial Key Technology R&D Program[grant number BE2022851]National Natural Science Foundation of China[grant number 42405035]。
文摘Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
文摘Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
文摘本文给出了Fock空间上两个Hankel算子乘积的有界性的必要条件描述,且结合反例证明此条件是两个Hankel算子乘积的有界性的必要不充分条件。In this paper, we give a description of the necessary condition for boundedness of the product of two Hankel operators on Fock space, and prove that this condition is a necessary and insufficient condition for boundedness of the product of two Hankel operators.
基金supported by the National key R and D Program of China 2020YFA0713100the NSFC(12141104,12371062 and 12431004).
文摘In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
文摘本文主要研究了Fock空间Fαp上小Hankel算子hφ的有界性和紧性,得到了hφ在Fαp上有界的充分必要条件是其符号φ属于Fock空间Fα2∞;hφ在Fαp上紧的充分必要条件是φ属于fα2∞。This paper mainly studies the boundedness and compactness of the small Hankel operator hφon Fock space Fαp. It is found that the necessary and sufficient condition for hφbeing bounded on Fαpis that its symbol φbelongs to Fock space Fα2∞;the necessary and sufficient condition for hφbeing compact on Fαpis that φbelongs to fα2∞.