期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
A Novel Handcrafted with Deep Features Based Brain Tumor Diagnosis Model 被引量:1
1
作者 Abdul Rahaman Wahab Sait Mohamad Khairi Ishak 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2057-2070,共14页
In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under... In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases.Magnetic Resonance Imaging(MRI)is one of the effective non-invasive strate-gies that generate a huge and distinct number of tissue contrasts in every imaging modality.This technique is commonly utilized by healthcare professionals for Brain Tumor(BT)diagnosis.With recent advancements in Machine Learning(ML)and Deep Learning(DL)models,it is possible to detect the tumor from images automatically,using a computer-aided design.The current study focuses on the design of automated Deep Learning-based BT Detection and Classification model using MRI images(DLBTDC-MRI).The proposed DLBTDC-MRI techni-que aims at detecting and classifying different stages of BT.The proposed DLBTDC-MRI technique involves medianfiltering technique to remove the noise and enhance the quality of MRI images.Besides,morphological operations-based image segmentation approach is also applied to determine the BT-affected regions in brain MRI image.Moreover,a fusion of handcrafted deep features using VGGNet is utilized to derive a valuable set of feature vectors.Finally,Artificial Fish Swarm Optimization(AFSO)with Artificial Neural Network(ANN)model is utilized as a classifier to decide the presence of BT.In order to assess the enhanced BT classification performance of the proposed model,a comprehensive set of simulations was performed on benchmark dataset and the results were vali-dated under several measures. 展开更多
关键词 Brain tumor medical imaging image classification handcrafted features deep learning parameter optimization
暂未订购
Optimal Fusion-Based Handcrafted with Deep Features for Brain Cancer Classification
2
作者 Mahmoud Ragab Sultanah M.Alshammari +1 位作者 Amer H.Asseri Waleed K.Almutiry 《Computers, Materials & Continua》 SCIE EI 2022年第10期801-815,共15页
Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer a... Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer aided diagnosis(CAD)models can be designed to assist radiologists.With the recent advancement in computer vision(CV)and deep learning(DL)models,it is possible to automatically detect the tumor from images using a computer-aided design.This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features(HGSO-FHDF)technique for brain cancer classification.The proposed HGSO-FHDF technique aims for detecting and classifying different stages of brain tumors.The proposed HGSO-FHDF technique involves Gabor filtering(GF)technique for removing the noise and enhancing the quality of MRI images.In addition,Tsallis entropy based image segmentation approach is applied to determine injured brain regions in the MRI image.Moreover,a fusion of handcrafted with deep features using Residual Network(ResNet)is utilized as feature extractors.Finally,HGSO algorithm with kernel extreme learning machine(KELM)model was utilized for identifying the presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations take place on the BRATS 2015 dataset. 展开更多
关键词 Brain cancer medical imaging deep learning fusion model metaheuristics feature extraction handcrafted features
暂未订购
Ensemble of Handcrafted and Deep Learning Model for Histopathological Image Classification
3
作者 Vasumathi Devi Majety N.Sharmili +5 位作者 Chinmaya Ranjan Pattanaik ELaxmi Lydia Subhi R.M.Zeebaree Sarmad Nozad Mahmood Ali S.Abosinnee Ahmed Alkhayyat 《Computers, Materials & Continua》 SCIE EI 2022年第11期4393-4406,共14页
Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining th... Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining them.The investigation of the histopathological image is a problematic and laborious process that necessitates the expert’s knowledge.At the same time,deep learning(DL)techniques are able to derive features,extract data,and learn advanced abstract data representation.With this view,this paper presents an ensemble of handcrafted with deep learning enabled histopathological image classification(EHCDL-HIC)model.The proposed EHCDLHIC technique initially performs Weiner filtering based noise removal technique.Once the images get smoothened,an ensemble of deep features and local binary pattern(LBP)features are extracted.For the classification process,the bidirectional gated recurrent unit(BGRU)model can be employed.At the final stage,the bacterial foraging optimization(BFO)algorithm is utilized for optimal hyperparameter tuning process which leads to improved classification performance,shows the novelty of the work.For validating the enhanced execution of the proposed EHCDL-HIC method,a set of simulations is performed.The experimentation outcomes highlighted the betterment of the EHCDL-HIC approach over the existing techniques with maximum accuracy of 94.78%.Therefore,the EHCDL-HIC model can be applied as an effective approach for histopathological image classification. 展开更多
关键词 Histopathological image classification machine learning deep learning handcrafted features bacterial foraging optimization
在线阅读 下载PDF
Nano-Microplate Gold Clay for Handcraft Jewelry and Decoration
4
作者 Pimthong Thongnopkun 《宝石和宝石学杂志》 CAS 2018年第S1期139-139,共1页
Gold clay is a crafting medium consisting of gold particles mixed with an organic binder and water for making jewelry or decoration.The clay can be shaped by hand,textured,carved,formed or using molds.After drying and... Gold clay is a crafting medium consisting of gold particles mixed with an organic binder and water for making jewelry or decoration.The clay can be shaped by hand,textured,carved,formed or using molds.After drying and burning,the organic binder and water were decomposed and the gold particles were transformed to its final metal state.Although,gold clay is very expensive,it is useful to decorate the silver clay designed jewelry or small sculptures.In this research,nano-microplate gold and specific organic binder was used for producing nano-microplate gold clay.The objectives of this research are to study binder's type and ratios for optimum producing gold clay,and to study the heating condition for making silver and gold clay jewelry.The result showed that the clay can be fired with heating temperature at 900°C for an hour by electric kiln.The physical properties of the gold clay at different heating temperatures were determined.Furthermore,prototype of jewelry using the clay was 展开更多
关键词 nano-microplate gold clay producing condition handcraft jewelry
在线阅读 下载PDF
Folk Handcrafts of Beijing
5
《China & The World Cultural Exchange》 1997年第1期34-38,共5页
关键词 Folk handcrafts of Beijing
在线阅读 下载PDF
Combining Handcrafted Features and Deep Learning for Automatic Classification of Lung Cancer on CT Scans
6
作者 Pallavi Deshpande Mohammed Wasim Bhatt +4 位作者 Santaji Krishna Shinde Neelam Labhade-Kumar N.Ashokkumar K.G.S.Venkatesan Finney Daniel Shadrach 《Journal of Artificial Intelligence and Technology》 2024年第2期102-113,共12页
On a global scale,lung cancer is responsible for around 27%of all cancer fatalities.Even though there have been great strides in diagnosis and therapy in recent years,the five-year cure rate is just 19%.Classification... On a global scale,lung cancer is responsible for around 27%of all cancer fatalities.Even though there have been great strides in diagnosis and therapy in recent years,the five-year cure rate is just 19%.Classification is crucial for diagnosing lung nodules.This is especially true today that automated categorization may provide a professional opinion that can be used by doctors.New computer vision and machine learning techniques have made possible accurate and quick categorization of CT images.This field of research has exploded in popularity in recent years because of its high efficiency and ability to decrease labour requirements.Here,they want to look carefully at the current state of automated categorization of lung nodules.Generalpurpose structures are briefly discussed,and typical algorithms are described.Our results show deep learning-based lung nodule categorization quickly becomes the industry standard.Therefore,it is critical to pay greater attention to the coherence of the data inside the study and the consistency of the research topic.Furthermore,there should be greater collaboration between designers,medical experts,and others in the field. 展开更多
关键词 CT image classification deep learning handcrafted features lung cancer lung nodule classification
在线阅读 下载PDF
Art Handcraft Teaching and the Countermeasures for Pupils to Develop Their Creative Ability
7
作者 SONGJunyan 《外文科技期刊数据库(文摘版)教育科学》 2022年第1期001-004,共4页
Competition in modern society requires teachers to cultivate creative and pioneering talents, which indicates that teachers are required to cultivate students' creative ability. In the primary school stage, art ha... Competition in modern society requires teachers to cultivate creative and pioneering talents, which indicates that teachers are required to cultivate students' creative ability. In the primary school stage, art handicraft is to cultivate students' practical ability and interest, while in the primary school stage, and art handicraft teaching mostly belongs to the teaching of cultivating students' creative ability. This article will discuss the art handicraft teaching and the primary school students' creative ability cultivation countermeasure. 展开更多
关键词 primary school art handcraft teaching creative ability
在线阅读 下载PDF
The charm of handcrafted wood carving
8
作者 徐静 《疯狂英语(新策略)》 2025年第9期65-65,共1页
I've always been interested in traditional crafts,so when my school organized a workshop on wood carving,an ancient Chinese art form,I signed up right away.The workshop was held in a small studio in the old town.A... I've always been interested in traditional crafts,so when my school organized a workshop on wood carving,an ancient Chinese art form,I signed up right away.The workshop was held in a small studio in the old town.As I walked in,I was greeted by the smell of wood and the sound made by carving wood.The teacher,Mr Zhang,was a master carver with over 30 years of experience.He showed us some of his works-beautiful sculptures of animals and flowers.I was amazed by the skill and patience it must have taken to create them. 展开更多
关键词 SKILL wood carvingan traditional crafts handcrafted PATIENCE carving woodthe Chinese art form wood carving
原文传递
波特钻石模型视角下手工艺服饰品竞争力的提升路径 被引量:1
9
作者 吴雪蒙 杨笑冰 李金侠 《服装学报》 北大核心 2025年第1期46-51,58,共7页
基于波特钻石模型分析法构建手工艺服饰品竞争力4级评价指标体系,以徐州马庄香包为例,运用德尔菲法得到香包产业竞争力评价指数,探究传统手工艺服饰品的竞争力提升路径。结果显示,生产要素、需求条件、相关产业和支持产业以及集群战略... 基于波特钻石模型分析法构建手工艺服饰品竞争力4级评价指标体系,以徐州马庄香包为例,运用德尔菲法得到香包产业竞争力评价指数,探究传统手工艺服饰品的竞争力提升路径。结果显示,生产要素、需求条件、相关产业和支持产业以及集群战略、结构和竞争等直接因素,叠加政府要素和机会两大辅助因素,是徐州马庄香包手工艺产业快速发展的动因。研究认为,生产要素扎实、政府要素完善、需求和机会要素充分是香包产业发展的优势指数,而人力和设施建设有待完善、需求挖掘不够精准、未抓住新兴机遇是制约其竞争力的劣势指数,应优化香包的生产要素构成,改善需求及营销策略,完善产业及支撑条件,同时优化其运行及竞争环境,进一步提升香包产业的竞争力。 展开更多
关键词 手工艺服饰品 马庄香包 波特钻石模型 产业化开发 竞争力提升
在线阅读 下载PDF
HybridLSTM:An Innovative Method for Road Scene Categorization Employing Hybrid Features
10
作者 Sanjay P.Pande Sarika Khandelwal +4 位作者 Ganesh K.Yenurkar Rakhi D.Wajgi Vincent O.Nyangaresi Pratik R.Hajare Poonam T.Agarkar 《Computers, Materials & Continua》 2025年第9期5937-5975,共39页
Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learni... Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learning have significantly enhanced road scene classification,simultaneously achieving high accuracy,computational efficiency,and adaptability across diverse conditions continues to be difficult.To address these challenges,this study proposes HybridLSTM,a novel and efficient framework that integrates deep learning-based,object-based,and handcrafted feature extraction methods within a unified architecture.HybridLSTM is designed to classify four distinct road scene categories—crosswalk(CW),highway(HW),overpass/tunnel(OP/T),and parking(P)—by leveraging multiple publicly available datasets,including Places-365,BDD100K,LabelMe,and KITTI,thereby promoting domain generalization.The framework fuses object-level features extracted using YOLOv5 and VGG19,scene-level global representations obtained from a modified VGG19,and fine-grained texture features captured through eight handcrafted descriptors.This hybrid feature fusion enables the model to capture both semantic context and low-level visual cues,which are critical for robust scene understanding.To model spatial arrangements and latent sequential dependencies present even in static imagery,the combined features are processed through a Long Short-Term Memory(LSTM)network,allowing the extraction of discriminative patterns across heterogeneous feature spaces.Extensive experiments conducted on 2725 annotated road scene images,with an 80:20 training-to-testing split,validate the effectiveness of the proposed model.HybridLSTM achieves a classification accuracy of 96.3%,a precision of 95.8%,a recall of 96.1%,and an F1-score of 96.0%,outperforming several existing state-of-the-art methods.These results demonstrate the robustness,scalability,and generalization capability of HybridLSTM across varying environments and scene complexities.Moreover,the framework is optimized to balance classification performance with computational efficiency,making it highly suitable for real-time deployment in embedded autonomous driving systems.Future work will focus on extending the model to multi-class detection within a single frame and optimizing it further for edge-device deployments to reduce computational overhead in practical applications. 展开更多
关键词 HybridLSTM autonomous vehicles road scene classification critical requirement global features handcrafted features
在线阅读 下载PDF
剪纸文化元素在皮革制品设计中的应用研究 被引量:1
11
作者 毕玉芳 《中国皮革》 2025年第9期84-87,共4页
剪纸是中国民间传统手工艺术,以简约精美的特点广泛应用于设计领域。它是通过手工在纸张上剪出各种图案、文字或造型的艺术。皮革制品也是一种重要的手工艺品类,它能与剪纸文化元素相互融合。本文探讨剪纸文化元素在皮革制品中的应用及... 剪纸是中国民间传统手工艺术,以简约精美的特点广泛应用于设计领域。它是通过手工在纸张上剪出各种图案、文字或造型的艺术。皮革制品也是一种重要的手工艺品类,它能与剪纸文化元素相互融合。本文探讨剪纸文化元素在皮革制品中的应用及其价值,为皮革制品行业增添新艺术形式,推动其向多元化设计理念发展,满足受众多样化和个性化消费需求。 展开更多
关键词 剪纸文化元素 皮革制品 手工艺术
原文传递
融合手工设计特征与深度学习的磨粒缺陷检测模型 被引量:1
12
作者 侯志昌 杨灏瀛 汪红兵 《河北冶金》 2025年第6期46-52,共7页
深度学习的目标检测模型主要应用于自然场景,若将其直接应用于工业场景,由于其数据样本不足,有可能导致对领域目标特征提取不够充分,模型检测精度不理想。为提升磨粒缺陷的检测精度,以Cascade R-CNN模型作为基线,提出了一种二维手工特... 深度学习的目标检测模型主要应用于自然场景,若将其直接应用于工业场景,由于其数据样本不足,有可能导致对领域目标特征提取不够充分,模型检测精度不理想。为提升磨粒缺陷的检测精度,以Cascade R-CNN模型作为基线,提出了一种二维手工特征与深度学习相融合的磨粒缺陷检测模型。采用双向多尺度特征融合模块BiCE-FPN,解决目标尺度不一问题;采用梯度调和分类损失GHMC,解决缺陷样本不均衡问题;通过融合磨粒缺陷的二维纹理、梯度手工特征与深度特征,解决磨粒缺陷样本不足造成的深度学习特征抽取不够充分问题。研究结果表明:双向多尺度特征融合BiCE-FPN、梯度调和分类损失GHMC策略和特征融合均对提升模型的检测精度起到了积极作用。 展开更多
关键词 深度学习 磨粒缺陷 手工设计特征 特征融合 检测精度
在线阅读 下载PDF
基于高精度点云及LACV-net的输电杆塔电场计算模型自动构建方法
13
作者 甘凌楦 谢涛 +4 位作者 何理 范鹏 黎鹏 吴田 孙亦恺 《电气工程学报》 北大核心 2025年第6期84-95,共12页
输电杆塔周围的电场强度是线路优化设计和带电运维人员安全评估的重要指标。然而,目前电场计算模型的构建仍需由图纸获取参数并依赖人工操作,效率低下且自动化程度不足。鉴于此,基于高精度点云数据,建立了杆塔关键点智能提取模型,进而... 输电杆塔周围的电场强度是线路优化设计和带电运维人员安全评估的重要指标。然而,目前电场计算模型的构建仍需由图纸获取参数并依赖人工操作,效率低下且自动化程度不足。鉴于此,基于高精度点云数据,建立了杆塔关键点智能提取模型,进而提出了输电杆塔电场计算模型的自动构建方法。首先,建立杆塔点云的局部坐标系并分离塔身、塔头点云;其次,对于塔身,由人工设计特征直接计算关键点坐标,对于塔头,通过LACV-net塔头关键点提取模型定位关键点位置;最后,结合导线位置与输电杆塔的点、面拓扑关系,构建电场计算模型。实例分析表明,与经典算法相比,所提方法的塔头关键点提取偏差减少了75%,提取时间缩减了73.6%;此外,相较于图纸建模,电场强度的计算偏差为5.7%,验证了所提方法的有效性。 展开更多
关键词 输电杆塔 高精度点云 电场计算模型 LACV-net 人工设计特征
在线阅读 下载PDF
基于符号学理论的手工皮具文创产品设计研究 被引量:2
14
作者 黄诗琪 赵丽雪 《西部皮革》 2025年第7期85-87,共3页
文章从符号学理论出发,系统探讨了文化符号在手工皮具文创产品设计中的应用价值与实施路径。通过构建符号学理论与手工皮具设计实践的有效连接,深入分析了文化符号的提取、转化与创新应用机制,提出了具有可操作性的设计策略,不仅为提升... 文章从符号学理论出发,系统探讨了文化符号在手工皮具文创产品设计中的应用价值与实施路径。通过构建符号学理论与手工皮具设计实践的有效连接,深入分析了文化符号的提取、转化与创新应用机制,提出了具有可操作性的设计策略,不仅为提升手工皮具文创产品的文化内涵和市场竞争力提供了理论支撑,同时为传统文化元素在现代设计中的创新转化与传承发展开辟了新途径,对促进文化创意产业与传统工艺融合发展具有重要的理论意义和实践价值。 展开更多
关键词 手工皮具 文创产品 文化符号 文化传承
在线阅读 下载PDF
乡土新兴实践:青年主理人如何重构手工艺的当代价值
15
作者 李浩(文/图) 张朵朵(文/图) 《公共艺术》 2025年第3期24-30,共7页
本文聚焦“青年乡村主理人”这一新兴创意群体,探讨他们如何通过手工艺的再实践、重构手工艺在当代中国乡村语境中的文化、社会与经济价值。研究指出,这一群体不仅是“创意阶层”在中国的在地化体现、也是乡村振兴与文旅融合背景下推动... 本文聚焦“青年乡村主理人”这一新兴创意群体,探讨他们如何通过手工艺的再实践、重构手工艺在当代中国乡村语境中的文化、社会与经济价值。研究指出,这一群体不仅是“创意阶层”在中国的在地化体现、也是乡村振兴与文旅融合背景下推动社会创新的重要力量。手工艺不仅成为他们构建“有意义劳动”的关键方式、更成为介入乡村、激活在地资源与重塑日常生活的重要媒介。通过对身份建构、关系联结与生态共生三种路径的分析、本文揭示了手工艺在主理人群体的乡土实践中所承载的构建自我表达、建立社群联系与共享可持续愿景的多重功能。 展开更多
关键词 手工艺 创意阶层 青年下乡 乡村振兴 社会创新
原文传递
多类型提示互补的弱监督时序动作定位
16
作者 任小龙 张飞飞 +1 位作者 周琬婷 周玲 《中国图象图形学报》 北大核心 2025年第3期842-854,共13页
目的弱监督时序动作定位仅利用视频级标注来定位动作实例的起止时间并识别其类别。目前基于视觉语言的方法利用文本提示信息来提升时序动作定位模型的性能。在视觉语言模型中,动作标签文本通常被封装为文本提示信息,按类型可分为手工类... 目的弱监督时序动作定位仅利用视频级标注来定位动作实例的起止时间并识别其类别。目前基于视觉语言的方法利用文本提示信息来提升时序动作定位模型的性能。在视觉语言模型中,动作标签文本通常被封装为文本提示信息,按类型可分为手工类型提示(handcrafted prompts)和可学习类型提示(learnable prompts),而现有方法忽略了二者间的互补性,使得引入的文本提示信息无法充分发挥其引导作用。为此,提出一种多类型提示互补的弱监督时序动作定位模型(multi-type prompts complementary model for weakly-supervised temporal action location)。方法首先,设计提示交互模块,针对不同类型的文本提示信息分别与视频进行交互,并通过注意力加权,从而获得不同尺度的特征信息;其次,为了实现文本与视频对应关系的建模,本文利用一种片段级对比损失来约束文本提示信息与动作片段之间的匹配;最后,设计阈值筛选模块,将多个分类激活序列(class activation sequence,CAS)中的得分进行筛选比较,以增强动作类别的区分性。结果在3个具有代表性的数据集THUMOS14、ActivityNet1.2和ActivityNet1.3上与同类方法进行比较。本文方法在THUMOS14数据集中的平均精度均值(mean average precision,mAP)(0.1∶0.7)取得39.1%,在ActivityNet1.2中mAP(0.5∶0.95)取得27.3%,相比于P-MIL(proposal-based multiple instance learning)方法分别提升1.1%和1%。而在ActivityNet1.3数据集中mAP(0.5∶0.95)取得了与对比工作相当的性能,平均mAP达到26.7%。结论本文提出的时序动作定位模型,利用两种类型文本提示信息的互补性来引导模型定位,提出的阈值筛选模块可以最大化利用两种类型文本提示信息的优势,最大化其辅助作用,使定位的结果更加准确。 展开更多
关键词 弱监督时序动作定位(WTAL) 视觉语言模型 手工类型提示 可学习类型提示 分类激活序列(CAS)
原文传递
论机制建筑陶瓷的手工意韵
17
作者 薛圣言 闫婧婕 《景德镇陶瓷》 2025年第5期54-57,共4页
文章以机制建筑陶瓷与手工意韵相结合为视角,从机制建筑陶瓷与手工意韵的相关概念界定入手,阐述机制建筑陶瓷手工意韵的成因,重点从釉面色彩的手工自然化、砖面效果的手工仿真化、模压肌理的手工个性化、装饰画面的手工图案化和彩绘装... 文章以机制建筑陶瓷与手工意韵相结合为视角,从机制建筑陶瓷与手工意韵的相关概念界定入手,阐述机制建筑陶瓷手工意韵的成因,重点从釉面色彩的手工自然化、砖面效果的手工仿真化、模压肌理的手工个性化、装饰画面的手工图案化和彩绘装饰的手工艺术化五个方面详细分析机制建筑陶瓷手工意韵的表现方式,认为机制建筑陶瓷手工意韵的表达具有广阔的发展前景,并期冀为将来建筑陶瓷设计实践提供一定的参考价值。 展开更多
关键词 机制建筑陶瓷 手工意韵 瓷砖 设计
在线阅读 下载PDF
乡村文旅融合视野下手工艺的公众参与体验模态研究:基于大理白族三个传统村落的调研
18
作者 张琳翊(图/文) 邹洲(图/文) 《公共艺术》 2025年第3期60-66,共7页
本文以云南大理白族聚居区三个以传统工艺为核心驱动力的特色村落——周城、剑川、鹤庆为研究对象,分析了云南乡村手工艺的发展业态与公众体验现状,并从三个村落的手工艺体验模式入手,分析“技艺”如何主导体验模式的分化、吸纳公众“... 本文以云南大理白族聚居区三个以传统工艺为核心驱动力的特色村落——周城、剑川、鹤庆为研究对象,分析了云南乡村手工艺的发展业态与公众体验现状,并从三个村落的手工艺体验模式入手,分析“技艺”如何主导体验模式的分化、吸纳公众“差异群体”参与工艺体验.并提出“技艺”形态的“类别分层”筛选与适配服务公众参与体验群体,为具有传统工艺的乡村提供发展路径借鉴。 展开更多
关键词 乡村发展 文旅融合 手工艺体 验.公众参与
原文传递
手作复兴:中国传统工艺的可持续创新路径探索
19
作者 刘鹏飞 《公共艺术》 2025年第3期18-23,共6页
本文系统地探讨了中国传统工艺在当代社会的可持续创新路径。中国传统工艺正通过融合现代设计理念、改良生产方式、构建多元协作机制和加强文化传播等方式实现重生。文章强调,传统工艺不仅要保留技艺本身的文化价值.更需契合现代人的生... 本文系统地探讨了中国传统工艺在当代社会的可持续创新路径。中国传统工艺正通过融合现代设计理念、改良生产方式、构建多元协作机制和加强文化传播等方式实现重生。文章强调,传统工艺不仅要保留技艺本身的文化价值.更需契合现代人的生活方式和审美诉求,通过产学研合作、智能制造、社群共创及场景化营销、打通从匠人到市场的全链路生态。借鉴日本、泰国等地的成功经验,文章提出复兴传统工艺的关键在于建立“传统与当代”“手工与产业”之间的持续对话与平衡,从而推动传统工艺从文化遗产走向现代生活美学,迈向具有东方智慧的可持续发展新阶段。 展开更多
关键词 手作复兴 现代美学 智能制造 全链路生态 可持续
原文传递
中国语境下“工业遗产”概念界定与比较分析
20
作者 王冬冬 《自然与文化遗产研究》 2025年第5期3-10,共8页
工业遗产概念的界定既需要理解其产生的背景,也要符合其应用地区的现实情况。工业遗产与农业遗产、手工业遗产、科学遗产、技术遗产以及工程遗产等存在不同程度的关系,通过对现有工业遗产不同认知间的主要矛盾及其具体表现的分析,进而... 工业遗产概念的界定既需要理解其产生的背景,也要符合其应用地区的现实情况。工业遗产与农业遗产、手工业遗产、科学遗产、技术遗产以及工程遗产等存在不同程度的关系,通过对现有工业遗产不同认知间的主要矛盾及其具体表现的分析,进而探讨上述各类遗产在中国语境下对工业遗产概念边界确定的影响,有助于最终确认中国工业遗产概念。中国工业遗产的概念应以生产为核心特征、以古今沿用为特色,强调以工业化时期的工业产业为主体,同时囊括与之一脉相承的手工业,从而适应于中国的工业遗产保护和利用,彰显中国工业文化的历史传承和特质。本研究旨在为世界范围内拓展对工业遗产的认识作出贡献。 展开更多
关键词 工业遗产 产业遗产 工业化遗产 手工业遗产 技术遗产
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部