Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults ...Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings.展开更多
Different properties of recently introduced Paired Haar transform have been shown. Nonpolynomial Haar Pxpansion of incompletely specified Boolean functions has been presented. Based on the above properties and expansi...Different properties of recently introduced Paired Haar transform have been shown. Nonpolynomial Haar Pxpansion of incompletely specified Boolean functions has been presented. Based on the above properties and expansion some applications of Paired Haar spectrum have been proposed. Algorithm for the calculation of Haar Pair spectrum from disjoint cubes for systems of incompletely specified Boolean functions has also been developed.展开更多
In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a...In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a 2×2 multimode interference(MMI)coupler and aπ/2 delay line phase shifter as the key components.The chip uses highly borosilicate glass as the substrate,Su8 negative photoresist as the core layer,and air as the cladding layer.Its horizontal and longitudinal dimensions are 8011μm×10000μm.Simulation results present that the designed optical circuit has a coupling ratio(CR)of 0:100 and an insertion loss(IL)of 0.001548 d B.Then the chip is fabricated by femtosecond laser and testing results illustrate that the chip has a CR of 6:94 and an IL of 0.518 d B.So,the prepared chip possesses good image compression performance.展开更多
In this paper, we propose a novel application of Haar scattering transform to learn features over multiple modalities data. A series of tasks for multimodal learning are presented, and the way of multimodal feature le...In this paper, we propose a novel application of Haar scattering transform to learn features over multiple modalities data. A series of tasks for multimodal learning are presented, and the way of multimodal feature learning is shown. Furthermore, we validate our methods on several datasets with an classification task, demonstrating that the approach is effective.展开更多
为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误...为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。展开更多
基金supported by theResearchers Supporting Project No.RSP-2021/14,King Saud University,Riyadh,Saudi Arabia.
文摘Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings.
文摘Different properties of recently introduced Paired Haar transform have been shown. Nonpolynomial Haar Pxpansion of incompletely specified Boolean functions has been presented. Based on the above properties and expansion some applications of Paired Haar spectrum have been proposed. Algorithm for the calculation of Haar Pair spectrum from disjoint cubes for systems of incompletely specified Boolean functions has also been developed.
基金the Natural Science Foundation of Hubei Province(No.2017CFB685)Hubei University of Technology"Advanced Manufacturing Technology and Equipment"Collaborative Innovation Center Open Research Fund(Nos.038/1201501 and 038/1201803)the College-level Project of Hubei University of Technology(Nos.4201/01758,4201/01802,4201/01889,and 4128/21025)。
文摘In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a 2×2 multimode interference(MMI)coupler and aπ/2 delay line phase shifter as the key components.The chip uses highly borosilicate glass as the substrate,Su8 negative photoresist as the core layer,and air as the cladding layer.Its horizontal and longitudinal dimensions are 8011μm×10000μm.Simulation results present that the designed optical circuit has a coupling ratio(CR)of 0:100 and an insertion loss(IL)of 0.001548 d B.Then the chip is fabricated by femtosecond laser and testing results illustrate that the chip has a CR of 6:94 and an IL of 0.518 d B.So,the prepared chip possesses good image compression performance.
基金Supported by the Natural Science Foundation of China(11626239)China Scholarship Council(No.201708410483)the Foundation of Education Department of Henan Province(18A110037)
文摘In this paper, we propose a novel application of Haar scattering transform to learn features over multiple modalities data. A series of tasks for multimodal learning are presented, and the way of multimodal feature learning is shown. Furthermore, we validate our methods on several datasets with an classification task, demonstrating that the approach is effective.
文摘为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。