本文采用电弧离子镀(Arc ion plating,AIP)和高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)复合方法,通过调控HiPIMS占空比在M2高速钢基体和单晶硅片上沉积TiZrN/TiN纳米多层膜,探究HiPIMS占空比对TiZrN/TiN纳...本文采用电弧离子镀(Arc ion plating,AIP)和高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)复合方法,通过调控HiPIMS占空比在M2高速钢基体和单晶硅片上沉积TiZrN/TiN纳米多层膜,探究HiPIMS占空比对TiZrN/TiN纳米多层膜微观结构和性能的影响规律。结果表明:随着HiPIMS占空比的增加,TiZrN/TiN纳米多层膜表面大颗粒数量呈先减少后增加趋势,同时薄膜厚度呈先减小后增大趋势。随着HiPIMS占空比从2%增加10%,TiZrN/TiN纳米多层膜择优取向从(111)晶面转变为(220)晶面,膜基结合力等级均为HF1级,硬度均在33 GPa以上,稳定摩擦因数在0.79左右。当HiPIMS占空比为2%时,TiZrN/TiN纳米多层膜的磨损率达到最小,为1.73×10^(-8) mm^(3)/(N·mm),薄膜的耐磨损性能最好。当HiPIMS占空比为6%时,TiZrN/TiN纳米多层膜的硬度和弹性模量分别增加到43.73GPa和362.98 GPa,自腐蚀电位可达到-0.39 V(vs SCE),自腐蚀电流密度为0.731μA/cm^(2),薄膜耐腐蚀性能最强,腐蚀速率较低。综合对比可知,HiPIMS占空比为6%,是TiZrN/TiN纳米多层膜制备的最佳工艺参数。展开更多
传统直流磁控溅射(DC Magnetron Sputtering,DCMS)沉积金属薄膜时离化率较低,随着薄膜科学技术以及市场对薄膜材料质量的需求提高,对材料沉积时的离化率要求也更加高。高功率脉冲磁控溅射(High Power Impulse Magnetron Sputtering,HiPI...传统直流磁控溅射(DC Magnetron Sputtering,DCMS)沉积金属薄膜时离化率较低,随着薄膜科学技术以及市场对薄膜材料质量的需求提高,对材料沉积时的离化率要求也更加高。高功率脉冲磁控溅射(High Power Impulse Magnetron Sputtering,HiPIMS)是一项能在沉积时提供高电离率的技术。文章采用HiPIMS技术制备铂薄膜,并比较了HiPIMS不同脉宽和DCMS技术下沉积的铂薄膜的微观结构以及电学性能,然后在不同温度下退火处理进行比较分析。使用扫描电子显微镜(Scanning Electron Microscopy,SEM)、X射线衍射(X-Ray Diffraction,XRD)和油浴测试对铂薄膜的表截面形貌、晶体生长取向和电阻温度系数(Temperature Coefficient of Resistance,TCR)进行表征与测试。通过HiPIMS方法制备的铂薄膜退火后薄膜更加均匀、致密,缺陷更少,并且将150μs脉宽下HiPIMS沉积的铂薄膜进行1150℃的退火后,测得的TCR最大,TCR值达到-3.872×10^(-3)℃。展开更多
TiN coatings were prepared by the novel dual-stage high power impulse magnetron sputtering(HIPIMS)technique under different deposition time conditions,and the effects of microstructure and stress state at different co...TiN coatings were prepared by the novel dual-stage high power impulse magnetron sputtering(HIPIMS)technique under different deposition time conditions,and the effects of microstructure and stress state at different coating growth stages on the mechanical,tribological,and corrosion resistance performance of the coatings were analyzed.Results show that with the prolongation of deposition time from 30 min to 120 min,the surface structure of TiN coating exhibits a round cell structure with tightly doped small and large particles,maintaining the atomic stacking thickening mechanism of deposition-crystallization-growth.When the deposition time increases from 90 min to 120 min,the coating thickness increases from 3884 nm to 4456 nm,and the stress state of coating undergoes the compression-tension transition.When the deposition time is 90 min,TiN coating structure is dense and suffers relatively small compressive stress of−0.54 GPa.The coating has high hardness and elastic modulus,which are 27.5 and 340.2 GPa,respectively.Meanwhile,good tribological properties(average friction coefficient of 0.52,minimum wear rate of 1.68×10^(−4)g/s)and fine corrosion resistance properties(minimum corrosion current density of 1.0632×10^(−8)A·cm^(−2),minimum corrosion rate of 5.5226×10^(−5)mm·A^(−1))can also be obtained for the coatings.展开更多
文摘传统直流磁控溅射(DC Magnetron Sputtering,DCMS)沉积金属薄膜时离化率较低,随着薄膜科学技术以及市场对薄膜材料质量的需求提高,对材料沉积时的离化率要求也更加高。高功率脉冲磁控溅射(High Power Impulse Magnetron Sputtering,HiPIMS)是一项能在沉积时提供高电离率的技术。文章采用HiPIMS技术制备铂薄膜,并比较了HiPIMS不同脉宽和DCMS技术下沉积的铂薄膜的微观结构以及电学性能,然后在不同温度下退火处理进行比较分析。使用扫描电子显微镜(Scanning Electron Microscopy,SEM)、X射线衍射(X-Ray Diffraction,XRD)和油浴测试对铂薄膜的表截面形貌、晶体生长取向和电阻温度系数(Temperature Coefficient of Resistance,TCR)进行表征与测试。通过HiPIMS方法制备的铂薄膜退火后薄膜更加均匀、致密,缺陷更少,并且将150μs脉宽下HiPIMS沉积的铂薄膜进行1150℃的退火后,测得的TCR最大,TCR值达到-3.872×10^(-3)℃。
基金Xi'an Science and Technology Plan Project(23GXFW0055)Shaanxi Provincial Natural Science Basic Research Program Project(2024JC-YBQN-0525)National Natural Science Foundation of China(52001251)。
文摘TiN coatings were prepared by the novel dual-stage high power impulse magnetron sputtering(HIPIMS)technique under different deposition time conditions,and the effects of microstructure and stress state at different coating growth stages on the mechanical,tribological,and corrosion resistance performance of the coatings were analyzed.Results show that with the prolongation of deposition time from 30 min to 120 min,the surface structure of TiN coating exhibits a round cell structure with tightly doped small and large particles,maintaining the atomic stacking thickening mechanism of deposition-crystallization-growth.When the deposition time increases from 90 min to 120 min,the coating thickness increases from 3884 nm to 4456 nm,and the stress state of coating undergoes the compression-tension transition.When the deposition time is 90 min,TiN coating structure is dense and suffers relatively small compressive stress of−0.54 GPa.The coating has high hardness and elastic modulus,which are 27.5 and 340.2 GPa,respectively.Meanwhile,good tribological properties(average friction coefficient of 0.52,minimum wear rate of 1.68×10^(−4)g/s)and fine corrosion resistance properties(minimum corrosion current density of 1.0632×10^(−8)A·cm^(−2),minimum corrosion rate of 5.5226×10^(−5)mm·A^(−1))can also be obtained for the coatings.