Histone H2B ubiquitination(H2Bub)is positively linked to transcriptional activation,but the genetic programs affected by H2Bub to enhance drought tolerance remain largely unknown.Here,we show that OsbZIP27 interacts d...Histone H2B ubiquitination(H2Bub)is positively linked to transcriptional activation,but the genetic programs affected by H2Bub to enhance drought tolerance remain largely unknown.Here,we show that OsbZIP27 interacts directly with OsHUB1/2 to regulate drought tolerance in rice by binding to the promoters of OsHAK1 and OsGLN1 to achieve H2Bub and transcriptional activation.Consistently,mutations in OsbZIP27 reduce transcription of OsHAK1 and OsGLN1,resulting in increased sensitivity to drought stress.Moreover,loss of OsHUB1 and OsHUB2 function causes hypersensitivity to drought stress,whereas OsHUB2 overexpression enhances drought tolerance.Together,our results indicate that OsbZIP27 coordinates with OsHUB1/2 to enhance rice drought tolerance by increasing H2Bub and expression of OsHAK1 and OsGLN1.展开更多
The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMC...The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.展开更多
Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H...Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H2O2-metabolizing enzymes in rice seedlings under lead stress were studied. When rice seedlings grown in nutrient solution containing Pb^2+ (0, 0.05, 0.15, 0.25 mmol/L) for 18 d, the plant biomass as well as the chlorophyll content of leaves decreased with increasing Pb concentration. The pre-treatment with SA (treated with 0.1 mmol/L SA for 48 h before Pb stress) partially protected seedlings from Pb toxicity. The chlorophyll contents were significant higher in leaves of Pb-exposed with SA pre-treatment seedlings than in Pb-exposed plants at the same Pb intensity. SA pre-treated alone could significantly increase the length of shoot and root of seedlings but the vigour difference was not marked under long-term exposure to Pb toxicity. SA pre-treated influence the H2O2 level in leaves of seedlings by up-regulating the activity of superoxide dismutase (SOD), repressing the activity of catalase (CAT) and ascorbate peroxidase (APX) depending on the concentrations of Pb^2+ in the growth medium. The results supported the conclusion that SA played a positive role in rice seedlings against Pb toxicity.展开更多
Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathwa...Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathway participates in the pathogenesis of retinal endothelial injury and proliferative epiretinal membrane traction. In this study, we investigated the effect of the ROCK pathway inhibitor Y-27632 on retinal Müller cells subjected to hypoxia or oxidative stress. Müller cells were subjected to hypoxia or oxidative stress by exposure to CoCl2 or H2O2. After a 24-hour treatment with Y-27632, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to assess the survival of Müller cells. Hoechst 33258 was used to detect apoptosis, while 2′,7′-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species generation. A transwell chamber system was used to examine the migration ability of Müller cells. Western blot assay was used to detect the expression levels of α-smooth muscle actin, glutamine synthetase and vimentin. After treatment with Y-27632, Müller cells subjected to hypoxia or oxidative stress exhibited a morphology similar to control cells. Y-27632 reduced apoptosis, α-smooth muscle actin expression and reactive oxygen species generation under oxidative stress, and it reduced cell migration under hypoxia. Y-27632 also upregulated glutamine synthetase expression under hypoxia but did not impact vimentin expression. These findings suggest that Y-27632 protects Müller cells against cellular injury caused by oxidative stress and hypoxia by inhibiting the ROCK pathway.展开更多
One of the problems limiting the application of Stellite 6 coating is the residual stress resulting in cracks in the coating easily. In order to reduce the residual stress and increase the nano-indentation hardness,La...One of the problems limiting the application of Stellite 6 coating is the residual stress resulting in cracks in the coating easily. In order to reduce the residual stress and increase the nano-indentation hardness,La2 O3 was added to Stellite 6 coating in this study, and the influence on the microstructure, nano indentation hardness and residual stress of the coatings were investigated by scanning electron microscopy(SEM) with energy dispersive spectrum(EDS), X-ray diffraction(XRD) and nano-indentation tester. Results indicate that the addition of La2 O3 leads to the phenomenon that the dendrite is partly transformed into the equiaxed grain, which results in the grain refinement. The nano-indentation hardness of coatings is improved, which is attributed to the fine-grain strengthening and dispersion strengthening effect of La2 O3. With the addition of La2 O3, the residual stress in coatings is decreased significantly. Especially, when the content of La2 O3 is 0.8 wt%, the nano indentation hardness increases by 1.31 times and residual stress decreases to 20 percent, compared with coating without La2 O3.展开更多
The gene AtCSR encodes peptidyl-prolyl cis/trans isomerases (PPIases) that accelerate energetically unfavorable cis/trans isomerization of the peptide bond preceding proline production.In our studies,we found that AtC...The gene AtCSR encodes peptidyl-prolyl cis/trans isomerases (PPIases) that accelerate energetically unfavorable cis/trans isomerization of the peptide bond preceding proline production.In our studies,we found that AtCSR was associated with cadmium (Cd)-sensitive response in Arabidopsis.Our results show that AtCSR expression was triggered by Cd-stress in wild type Arabidopsis.The expression of some genes responsible for Cd2+ transportation into vacuoles was induced,and the expression of the iron-regulated transporter 1 (IRT1) related to Cd2+ absorption from the environment was not induced in wild type with Cd2+ treatment.The expression of Cd-transportation related genes was not in response to Cd-stress,whereas IRT expression increased dramatically in atcsr-2 with Cd2+ treatment.The expression of glutathione 1 (GSH1) was consistent with GSH being much lower in atcsr-2 in comparison with the wild type with Cd2+ treatment.Additionally,malondialdehyde (MDA),hydrogen peroxide,and Cd2+ contents,and activities of some antioxidative enzymes,differed between the wild type and atcsr-2.Hydrogen sulfide (H2S) has been confirmed as the third gas-transmitter over recent years.The findings revealed that the expression pattern of H2 S-releasing related genes and that of Cd-induced chelation and transportation genes matched well in the wild type and atcsr-2,and H2S could regulate the expression of the Cd-induced genes and alleviate Cd-triggered toxicity.Finally,one possible suggestion was given:down-regulation of atcsr-2,depending on H2S gas-transmitter not only weakened Cd2+ chelation,but also reduced Cd2+ transportation into vacuoles,as well as enhancing the Cd2+ assimilation,thus rendering atcsr-2 mutant sensitive to Cd-stress.展开更多
Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high ther...Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500℃ to 850 ~C. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters.展开更多
基金supported by the Open Research Fund Program of Anhui Province Key Laboratory of Rice Genetics and Breeding(SDKF-2023-02)the Postdoctoral Research Program of Anhui Province(2022B603)+5 种基金the Key Research and Development Projects in Anhui Province(2023n06020035)the National Natural Science Foundation of China(32230017,U19A2021,and 32321001)the Natural Science Foundation of Anhui province(2408085MC083)the Global Select Project(DJK-LX-2022007)of the Institute of Health and Medicinethe Hefei Comprehensive National Science Center,the Fundamental Research Funds for the Central Universities(WK9100000047)the Anhui Academy of Agricultural Sciences Young Talent Program(QNYC-201902).
文摘Histone H2B ubiquitination(H2Bub)is positively linked to transcriptional activation,but the genetic programs affected by H2Bub to enhance drought tolerance remain largely unknown.Here,we show that OsbZIP27 interacts directly with OsHUB1/2 to regulate drought tolerance in rice by binding to the promoters of OsHAK1 and OsGLN1 to achieve H2Bub and transcriptional activation.Consistently,mutations in OsbZIP27 reduce transcription of OsHAK1 and OsGLN1,resulting in increased sensitivity to drought stress.Moreover,loss of OsHUB1 and OsHUB2 function causes hypersensitivity to drought stress,whereas OsHUB2 overexpression enhances drought tolerance.Together,our results indicate that OsbZIP27 coordinates with OsHUB1/2 to enhance rice drought tolerance by increasing H2Bub and expression of OsHAK1 and OsGLN1.
文摘The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.
基金Project supported by the National Key Basic Research and Development Program (No. 2002CB410804) the National Natural Science Foundation of China (No. 30671255).
文摘Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H2O2-metabolizing enzymes in rice seedlings under lead stress were studied. When rice seedlings grown in nutrient solution containing Pb^2+ (0, 0.05, 0.15, 0.25 mmol/L) for 18 d, the plant biomass as well as the chlorophyll content of leaves decreased with increasing Pb concentration. The pre-treatment with SA (treated with 0.1 mmol/L SA for 48 h before Pb stress) partially protected seedlings from Pb toxicity. The chlorophyll contents were significant higher in leaves of Pb-exposed with SA pre-treatment seedlings than in Pb-exposed plants at the same Pb intensity. SA pre-treated alone could significantly increase the length of shoot and root of seedlings but the vigour difference was not marked under long-term exposure to Pb toxicity. SA pre-treated influence the H2O2 level in leaves of seedlings by up-regulating the activity of superoxide dismutase (SOD), repressing the activity of catalase (CAT) and ascorbate peroxidase (APX) depending on the concentrations of Pb^2+ in the growth medium. The results supported the conclusion that SA played a positive role in rice seedlings against Pb toxicity.
基金financially supported by the Scientific and Technological Project of Shaanxi Province of China,No.2016SF-010
文摘Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathway participates in the pathogenesis of retinal endothelial injury and proliferative epiretinal membrane traction. In this study, we investigated the effect of the ROCK pathway inhibitor Y-27632 on retinal Müller cells subjected to hypoxia or oxidative stress. Müller cells were subjected to hypoxia or oxidative stress by exposure to CoCl2 or H2O2. After a 24-hour treatment with Y-27632, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to assess the survival of Müller cells. Hoechst 33258 was used to detect apoptosis, while 2′,7′-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species generation. A transwell chamber system was used to examine the migration ability of Müller cells. Western blot assay was used to detect the expression levels of α-smooth muscle actin, glutamine synthetase and vimentin. After treatment with Y-27632, Müller cells subjected to hypoxia or oxidative stress exhibited a morphology similar to control cells. Y-27632 reduced apoptosis, α-smooth muscle actin expression and reactive oxygen species generation under oxidative stress, and it reduced cell migration under hypoxia. Y-27632 also upregulated glutamine synthetase expression under hypoxia but did not impact vimentin expression. These findings suggest that Y-27632 protects Müller cells against cellular injury caused by oxidative stress and hypoxia by inhibiting the ROCK pathway.
基金supported by National Natural Science Foundation of China(51575118,51705095)the National Basic Research Program of China(973 Program)(61328303)+1 种基金China Postdoctoral Science Foundation(2017T100225)Fundamental Research Funds for the Central Universities(HEUCF)
文摘One of the problems limiting the application of Stellite 6 coating is the residual stress resulting in cracks in the coating easily. In order to reduce the residual stress and increase the nano-indentation hardness,La2 O3 was added to Stellite 6 coating in this study, and the influence on the microstructure, nano indentation hardness and residual stress of the coatings were investigated by scanning electron microscopy(SEM) with energy dispersive spectrum(EDS), X-ray diffraction(XRD) and nano-indentation tester. Results indicate that the addition of La2 O3 leads to the phenomenon that the dendrite is partly transformed into the equiaxed grain, which results in the grain refinement. The nano-indentation hardness of coatings is improved, which is attributed to the fine-grain strengthening and dispersion strengthening effect of La2 O3. With the addition of La2 O3, the residual stress in coatings is decreased significantly. Especially, when the content of La2 O3 is 0.8 wt%, the nano indentation hardness increases by 1.31 times and residual stress decreases to 20 percent, compared with coating without La2 O3.
基金Project supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20091401110004)the Science and Technology Special Project of Shanxi Province,China (2012,to QiangZHANG)the Shanxi Scholarship Council of China (No. 2011-007)
文摘The gene AtCSR encodes peptidyl-prolyl cis/trans isomerases (PPIases) that accelerate energetically unfavorable cis/trans isomerization of the peptide bond preceding proline production.In our studies,we found that AtCSR was associated with cadmium (Cd)-sensitive response in Arabidopsis.Our results show that AtCSR expression was triggered by Cd-stress in wild type Arabidopsis.The expression of some genes responsible for Cd2+ transportation into vacuoles was induced,and the expression of the iron-regulated transporter 1 (IRT1) related to Cd2+ absorption from the environment was not induced in wild type with Cd2+ treatment.The expression of Cd-transportation related genes was not in response to Cd-stress,whereas IRT expression increased dramatically in atcsr-2 with Cd2+ treatment.The expression of glutathione 1 (GSH1) was consistent with GSH being much lower in atcsr-2 in comparison with the wild type with Cd2+ treatment.Additionally,malondialdehyde (MDA),hydrogen peroxide,and Cd2+ contents,and activities of some antioxidative enzymes,differed between the wild type and atcsr-2.Hydrogen sulfide (H2S) has been confirmed as the third gas-transmitter over recent years.The findings revealed that the expression pattern of H2 S-releasing related genes and that of Cd-induced chelation and transportation genes matched well in the wild type and atcsr-2,and H2S could regulate the expression of the Cd-induced genes and alleviate Cd-triggered toxicity.Finally,one possible suggestion was given:down-regulation of atcsr-2,depending on H2S gas-transmitter not only weakened Cd2+ chelation,but also reduced Cd2+ transportation into vacuoles,as well as enhancing the Cd2+ assimilation,thus rendering atcsr-2 mutant sensitive to Cd-stress.
基金Henan Innovation Project for University Prominent Research Talents (2007KYCX008)Henan Major Science and Technol-ogy Project (0523021500)+1 种基金Henan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation
文摘Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500℃ to 850 ~C. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters.