Electrochemical reduction of molecular O2 to hydrogen peroxide(H2O2)offers a promising solution for water purification and environmental remediation.Here,we design a hierarchical free-standing single-Co-atom(with Co-N...Electrochemical reduction of molecular O2 to hydrogen peroxide(H2O2)offers a promising solution for water purification and environmental remediation.Here,we design a hierarchical free-standing single-Co-atom(with Co-N4 coordination)electrode for oxygen reduction reaction(ORR)via a two-electron pathway to make H2O2 in acidic media.The current density of the single-Co-atom electrode reached 51 mA/cm2 at 0.1 V vs reversible hydrogen electrode,lasting for more than 10 hours of continuous operation with H2O2 selectivity greater than 80%.Toward practical application,the single-Co-atom electrode was directly used to assemble an electrochemical cell to produce H2O2 at a rate of 676 mol/kgcat/h with a cell voltage of about 1.6 V.展开更多
Developing enzyme-free sensors with high sensitivity and selectivity for H2O2 and glucose is highly desirable for biological science.Especially,it is attractive to exploit noble-metal-free nanomaterials with large sur...Developing enzyme-free sensors with high sensitivity and selectivity for H2O2 and glucose is highly desirable for biological science.Especially,it is attractive to exploit noble-metal-free nanomaterials with large surface area and good conductivity as highly active and selective catalysts for molecular detection in enzyme-free sensors.Herein,we successfully fabricate hollow frameworks of Co3O4/N-doped carbon nanotubes(Co3O4/NCNTs)hybrids by the pyrolysis of metal-organic frameworks followed by calcination in the air.The as-prepared novel hollow Co3O4/NCNTs hybrids exhibit excellent electrochemical performance for H2O2 reduction in neutral solutions and glucose oxidation in alkaline solutions.As sensor electrode,the Co3O4/NCNTs show excellent non-enzymatic sensing ability towards H2O2 response with a sensitivity of 87.40μA(mmol/L)^-1 cm^-2,a linear range of 5.00μmol/L-11.00 mmol/L,and a detection limitation of 1μmol/L in H2O2 detection,and a good glucose detection performance with 5μmol/L.These excellent electrochemical performances endow the hollow Co3O4/NCNTs as promising alternative to enzymes in the biological applications.展开更多
Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obt...Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obtained by in situ synthesis,which can activate H2O2 and degrade the organic pollutant OFC(ofloxacin)under visible light.The S-scheme charge transfer mechanism was confirmed by XPS spectroscopy,in situ KPFM and theoretical calculation.The photogenerated electrons were transferred from FeWO4 to BiOI driven by the built-in electric field and band bending,which inhibited carrier recombination and facilitated the activation of H2O2.The BiFe-5/Vis/H2O2 system degraded OFC up to 96.4%in 60 min.This study provides new systematic insights into the activation of H2O2 by S-scheme heterojunctions,which is of great significance for the treatment of antibiotic wastewater.展开更多
The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMC...The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.展开更多
基金This study was supported by the funds from the Singapore Ministry of Education Academic Research Fund,Tier 1:RG111/15 and RG10/16 and Tier 2:MOE2016-T2-2 to 004.
文摘Electrochemical reduction of molecular O2 to hydrogen peroxide(H2O2)offers a promising solution for water purification and environmental remediation.Here,we design a hierarchical free-standing single-Co-atom(with Co-N4 coordination)electrode for oxygen reduction reaction(ORR)via a two-electron pathway to make H2O2 in acidic media.The current density of the single-Co-atom electrode reached 51 mA/cm2 at 0.1 V vs reversible hydrogen electrode,lasting for more than 10 hours of continuous operation with H2O2 selectivity greater than 80%.Toward practical application,the single-Co-atom electrode was directly used to assemble an electrochemical cell to produce H2O2 at a rate of 676 mol/kgcat/h with a cell voltage of about 1.6 V.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.51671003,21802003,21571112)Natural Science Foundation of Shandong Province(ZR2018BB031)+3 种基金the Shandong Taishan Scholar Program(H.W.)the China Postdoctoral Science Foundation(No.2017M610022)the start-up supports from Peking UniversityYoung Thousand Talented Program。
文摘Developing enzyme-free sensors with high sensitivity and selectivity for H2O2 and glucose is highly desirable for biological science.Especially,it is attractive to exploit noble-metal-free nanomaterials with large surface area and good conductivity as highly active and selective catalysts for molecular detection in enzyme-free sensors.Herein,we successfully fabricate hollow frameworks of Co3O4/N-doped carbon nanotubes(Co3O4/NCNTs)hybrids by the pyrolysis of metal-organic frameworks followed by calcination in the air.The as-prepared novel hollow Co3O4/NCNTs hybrids exhibit excellent electrochemical performance for H2O2 reduction in neutral solutions and glucose oxidation in alkaline solutions.As sensor electrode,the Co3O4/NCNTs show excellent non-enzymatic sensing ability towards H2O2 response with a sensitivity of 87.40μA(mmol/L)^-1 cm^-2,a linear range of 5.00μmol/L-11.00 mmol/L,and a detection limitation of 1μmol/L in H2O2 detection,and a good glucose detection performance with 5μmol/L.These excellent electrochemical performances endow the hollow Co3O4/NCNTs as promising alternative to enzymes in the biological applications.
基金supported by the National Key Research and Development Program of China(2020YFD1100501)Thanks zkec(www.zjkec.cc)for XRD.
文摘Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obtained by in situ synthesis,which can activate H2O2 and degrade the organic pollutant OFC(ofloxacin)under visible light.The S-scheme charge transfer mechanism was confirmed by XPS spectroscopy,in situ KPFM and theoretical calculation.The photogenerated electrons were transferred from FeWO4 to BiOI driven by the built-in electric field and band bending,which inhibited carrier recombination and facilitated the activation of H2O2.The BiFe-5/Vis/H2O2 system degraded OFC up to 96.4%in 60 min.This study provides new systematic insights into the activation of H2O2 by S-scheme heterojunctions,which is of great significance for the treatment of antibiotic wastewater.
文摘The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.