The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that th...The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications.展开更多
Avalanche photon diode and avalanche diode array, working in Geiger mode, have single photon detection capability. The structure of guard ring is the key factor to avoid the premature edge breakdown of the avalanche d...Avalanche photon diode and avalanche diode array, working in Geiger mode, have single photon detection capability. The structure of guard ring is the key factor to avoid the premature edge breakdown of the avalanche diode and increase the maximum bias voltage. A new structure of the guard ring is proposed in this letter, in which the floating guard ring is put outside the p-well guard ring. Simulation results indicate that the maximum bias voltage of the proposed guard ring is higher than that of the state-of-the-art methods.展开更多
This paper presents the design and fabrication of an effective, robust and process-tolerant floating guard ring termination on high voltage 4H-SiC PiN diodes. Different design factors were studied by numerical simulat...This paper presents the design and fabrication of an effective, robust and process-tolerant floating guard ring termination on high voltage 4H-SiC PiN diodes. Different design factors were studied by numerical simulations and evaluated by device fabrication and measurement. The device fabrication was based on a 12 μm thick drift layer with an N-type doping concentration of 8 × 10^15 cm^-3. P^+ regions in the termination structure and anode layer were formed by multiple aluminum implantations. The fabricated devices present a highest breakdown voltage of 1.4 kV, which is higher than the simulated value. For the fabricated 15 diodes in one chip, all of them exceeded the breakdown voltage of 1 kV and six of them reached the desired breakdown value of 1.2 kV.展开更多
基金supported by the Jiangsu Agricultural Science and Technology Innovation Fund of China(No.CX(21)3062)the National Natural Science Foundation of China(No.62171233).
文摘The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications.
文摘Avalanche photon diode and avalanche diode array, working in Geiger mode, have single photon detection capability. The structure of guard ring is the key factor to avoid the premature edge breakdown of the avalanche diode and increase the maximum bias voltage. A new structure of the guard ring is proposed in this letter, in which the floating guard ring is put outside the p-well guard ring. Simulation results indicate that the maximum bias voltage of the proposed guard ring is higher than that of the state-of-the-art methods.
基金supported by the National High Technology Research and Development Program of China(No.2011AA050401)the Project of State Grid Corporation of China(No.SGRIDGKJ[2013]210)
文摘This paper presents the design and fabrication of an effective, robust and process-tolerant floating guard ring termination on high voltage 4H-SiC PiN diodes. Different design factors were studied by numerical simulations and evaluated by device fabrication and measurement. The device fabrication was based on a 12 μm thick drift layer with an N-type doping concentration of 8 × 10^15 cm^-3. P^+ regions in the termination structure and anode layer were formed by multiple aluminum implantations. The fabricated devices present a highest breakdown voltage of 1.4 kV, which is higher than the simulated value. For the fabricated 15 diodes in one chip, all of them exceeded the breakdown voltage of 1 kV and six of them reached the desired breakdown value of 1.2 kV.