The research explored effects of cultivation methods on growth, yield and quality of cassava. The results showed that the mulching treatment by direct seed- ing, the mulching treatment by transplanting, and the expose...The research explored effects of cultivation methods on growth, yield and quality of cassava. The results showed that the mulching treatment by direct seed- ing, the mulching treatment by transplanting, and the exposed treatment by trans- planting performed excellently in bringing seedling stage forward, improving germina- tion rate, yield and quality. For example, seedling emergence stages were 36, 31 and 31 d earlier; germination rates improved by 19.24%, 14.29% and 14.29%; yields grew by 41.98%, 26.72% and 11.45%; starch contents increased by 3.50%, 2.10% and 1.40%, respectively. Therefore, cassava in the mulching treatment by direct seeding is characterized by earlier seedling emergence stage, high germination rate, high yield and quality.展开更多
There is substantial individual variation in the growth rates of sea cucumber Apostiehopus japonicus individuals. This necessitates additional work to grade the seed stock and lengthens the production period. We evalu...There is substantial individual variation in the growth rates of sea cucumber Apostiehopus japonicus individuals. This necessitates additional work to grade the seed stock and lengthens the production period. We evaluated the influence of three culture methods (free-mixed, isolated-mixed, isolated-alone) on individual variation in growth and assessed the relationship between feeding, energy conversion efficiency, and individual growth variation in individually cultured sea cucumbers. Of the different culture methods, animals grew best when reared in the isolated-mixed treatment (i.e., size classes were held separately), though there was no difference in individual variation in growth between rearing treatment groups. The individual variation in growth was primarily attributed to genetic factors. The difference in food conversion efficiency caused by genetic differences among individuals was thought to be the origin of the variance. The level of individual growth variation may be altered by interactions among individuals and environmental heterogeneity. Our results suggest that, in addition to traditional seed grading, design of a new kind of substrate that changes the spatial distribution of sea cucumbers would effectively enhance growth and reduce individual variation in growth of sea cucumbers in culture.展开更多
In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-redu...In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-reducing methods(deinterlacing,removing every other plant in each row,removing every other plant every other row)on the canopy microenvironment,tree structure,leaf photosynthesis and fruit quality were studied.The results showed that different density-reducing methods significantly reduced the orchard coverage and increased the crown transmittance.Among them,the deinterlacing treatment was the best in improving the population structure of the closed orchard,as it reduced the orchard coverage rate by 55.68 percentage points and the canopy transmittance by 82.38 percentage points,compared with the control(CK).Different density-reducing methods all could significantly reduce the branch amount in the closed orchard and optimized the branch composition.The three density-reducing methods decreased the number of branches per plant by 18.96%,12.41%and 19.58%,respectively,compared with the CK.And compared with the CK,the proportion of short branches and leafy branches to the total branches was increased by 17.13%,14.27%and 7.37%,respectively,and the proportion of long branches and developmental branches to the total branches was decreased by 24.47%,18.04%and 10.79%,respectively.The effects of the different density-reducing methods on the temperature,relative light intensity,SPAD and leaf photosynthetic rate in canopies all followed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing<removing every other plant in each row<removing every other plant every other row<CK.The average single fruit weight(238.3 g),coloring index(89.2),smoothness index(83.2),soluble solid content(15.1%)and high quality fruit rate(82.4%)of the deinterlacing treatment were higher than those of other treatments,and the values were 18.2%,11.4%,5.85%,26.9%and 25.2%higher than the CK,respectively.The use of dein ̄terlacing to reduce density is the best for improving the microenvironment of closed apple orchards and improving the photosynthetic efficiency and fruit quality.展开更多
In recent years,plant growth regulators are widely used in agricultural products.As the toxicity of plant growth regulator residues has gained increasing concerns,trace analysis methods for plant growth regulators hav...In recent years,plant growth regulators are widely used in agricultural products.As the toxicity of plant growth regulator residues has gained increasing concerns,trace analysis methods for plant growth regulators have been developed.In this paper,the major methods with advantages and disadvantages for the detection and pre-treatment of plant growth regulator residues in agricultural products were summarized,including gas chromatography(GC),high performance liquid chromatography(HPLC),chromatographic technique combined with mass spectrometry,enzyme-linked immunosorbent assay(ELISA),capillary electrophoresis(CE)and so on.Meanwhile,the development prospects were also discussed.展开更多
Water-saving irrigation is an important way to realize the sustainable development of the apple industry.In order to screen the best irrigation pattern for apple,taking 9-year-old‘Yanfu 10'Fuji/Malus robusta appl...Water-saving irrigation is an important way to realize the sustainable development of the apple industry.In order to screen the best irrigation pattern for apple,taking 9-year-old‘Yanfu 10'Fuji/Malus robusta apple as the material,the effects of different irrigation methods(drip irrigation,sprinkling irrigation,and flood irrigation) on the growth,fruit quality,and yield of apple trees were studied.The results showed that compared with the flood irrigation,drip irrigation and sprinkling irrigation significantly increased the spring shoot length by 14.8%and 9.1%,respectively,and decreased the autumn shoot length by 11.7% and 8.8%,respectively.Drip irrigation and sprinkling irrigation significantly increased the leaf area,chlorophyll content,and leaf weight,the leaf area increased by 3.0% and 1.9%,respectively,the chlorophyll content increased by 13.9% and 11.5%,respectively,and the leaf weight increased by 5.8% and 5.1%,respectively.Drip irrigation and sprinkling irrigation could slightly increase the single fruit weight and fruit shape index,significantly increase the coloring index and smoothness index.The single fruit weight increased by 3.2% and 1.9%,the coloring index increased by 6.1% and 4.1%,the smoothness index increased by 4.7% and 2.8%,and the proportion of red fruit increased by 4.2% and 2.2%,respectively.The content of soluble solids in drip irrigation and sprinkling irrigation was significantly higher than that in flood irrigation,which was 13.0% and 2.6% higher than CK,respectively.The fruit hardness in drip irrigation and sprinkling irrigation was 7.9% and 2.2% higher than CK,respectively,and that in drip irrigation increased significantly.The yield in drip irrigation and sprinkling irrigation was 12.1% and 8.2% higher than CK,respectively.In conclusion,drip irrigation and sprinkling irrigation could promote the growth of apple trees,improve the fruit quality,and increase the yield of apple trees,and the effect of drip irrigation is better than sprinkling irrigation.展开更多
Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it...Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, height-growth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.展开更多
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of t...In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of the working space. All possible cubes are searched, and the cube with the maximum volume is selected. The calculation examples show that the method of growth can be used for a variety of industrial robots. The method of growth can determine the test cube and test points of irregular working space according to ISO 9283, and can avoid blindness and randomness in the selection of test points.展开更多
The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB...The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB) furnace were adopted in THM growth, and the effects of the polycrystalline feed on the growth interface were revealed. The morphology of the growth interface of CMT crystal(CMT2) grown from the feed by vertical Bridgman was smoother with lower curvature compared with that of CMT crystal(CMT1) from the feed by rocking furnace. The radial Mn composition and Te inclusion distribution of the CMT wafers were analyzed and correlated to the growth interface. The Mn segregation along the radial direction and Te inclusion density of CMT2 were lower than those of CMT1. The VB method synthesized polycrystalline feed could improve the growth interface morphology, which is beneficial for decreasing the Te inclusions and Mn segregation in CMT wafers.展开更多
Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium ...Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism.展开更多
The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure cons...The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.展开更多
To predict the dendrite morphology and microstructure evolution in the solidification of molten metal,numerically,lattice Boltzmann method(LBM)-cellular automata(CA)model has been developed by integrating the LBM to s...To predict the dendrite morphology and microstructure evolution in the solidification of molten metal,numerically,lattice Boltzmann method(LBM)-cellular automata(CA)model has been developed by integrating the LBM to solve the mass transport by diffusion and convection during solidification and the CA to determine the phase transformation with respect to the solid fraction based on the local equilibrium theory.It is successfully validated with analytic solutions such as Lipton-Glicksman-Kurz(LGK)model in static melt,and Oseen-Ivantsov solution under the fluid flow conditions in terms of tip radius and velocity of the dendrite growth.The proposed LBM-CA model does not only describe different types of dendrite formations with respect to various solidification conditions such as temperature gradient and growth rate,but also predict the primary dendrite arm spacing(PDAS)and the secondary dendrite arm spacing(SDAS),quantitatively,in directional solidification(DS)experiment with Ni-based superalloy.展开更多
The population balance modeling is regarded as a universally accepted mathematical framework for dynamic simulation of various particulate processes, such as crystallization, granulation and polymerization. This artic...The population balance modeling is regarded as a universally accepted mathematical framework for dynamic simulation of various particulate processes, such as crystallization, granulation and polymerization. This article is concerned with the application of the method of characteristics (MOC) for solving population balance models describing batch crystallization process. The growth and nucleation are considered as dominant phenomena, while the breakage and aggregation are neglected. The numerical solutions of such PBEs require high order accuracy due to the occurrence of steep moving fronts and narrow peaks in the solutions. The MOC has been found to be a very effective technique for resolving sharp discontinuities. Different case studies are carried out to analyze the accuracy of proposed algorithm. For validation, the results of MOC are compared with the available analytical solutions and the results of finite volume schemes. The results of MOC were found to be in good agreement with analytical solutions and superior than those obtained by finite volume schemes.展开更多
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
Different morphologies of zinc oxide(ZnO),including microrods,hexagonal pyramid-like rods and flower-like rod aggregates,had been synthesized,respectively,on glass substrates by controlling the reaction conditions(...Different morphologies of zinc oxide(ZnO),including microrods,hexagonal pyramid-like rods and flower-like rod aggregates,had been synthesized,respectively,on glass substrates by controlling the reaction conditions(such as precursor concentration,reaction time and pH value) of hydrothermal method.The morphologies of the as-obtained ZnO were observed with scanning electron microscopy and transmission electron microscopy.Also,the crystalline natures of different ZnO crystals were analyzed with X-ray diffraction.The possible growth mechanism of ZnO crystals with different morphologies was discussed.展开更多
High-quality superconducting Ca_(1-x)Na_(x)Fe_(2)As_(2)single crystals have been successfully grown by the NaAs-flux method,with sodium doping level x=0.4–0.64.The typical sizes of these crystals are more than 10 mm ...High-quality superconducting Ca_(1-x)Na_(x)Fe_(2)As_(2)single crystals have been successfully grown by the NaAs-flux method,with sodium doping level x=0.4–0.64.The typical sizes of these crystals are more than 10 mm in ab-plane and~0.1 mm along c-axis in thickness.X-ray diffraction,resistance and magnetization measurements are carried out to characterize the quality of these crystals.While no signature of magnetic phase transitions is detected in the normal state,bulk superconductivity is found for these samples,with a sharp transition at T_(c) ranging from 19.8 K(x=0.4)to 34.8 K(x=0.64).The doping dependences of the c-axis parameter and T_(c) are consistent with previous reports,suggesting a possible connection between the lattice parameters and superconductivity.展开更多
The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant fe...The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.展开更多
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pu...Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material was numerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domain of undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solved using the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patterns was shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.展开更多
Fatigue crack propagation characteristics of a diesel engine crankshaft are studied by measuring the fatigue crack growth rate using a frequency sweep method on a resonant fatigue test rig. Based on the phenomenon tha...Fatigue crack propagation characteristics of a diesel engine crankshaft are studied by measuring the fatigue crack growth rate using a frequency sweep method on a resonant fatigue test rig. Based on the phenomenon that the system frequency will change when the crack becomes large, this method can be directly applied to a complex component or structure. Finite element analyses (FEAs) are performed to calibrate the relation between the frequency change and the crack size, and to obtain the natural frequency of the test rig and the stress intensity factor (SIF) of growing cracks. The crack growth rate i.e. da/dN-AK of each crack size is obtained by combining the testing-time monitored data and FEA results. The results show that the crack growth rate of engine crankshaft, which is a component with complex geometry and special surface treatment, is quite different from that of a pure material. There is an apparent turning point in the Paris's crack partition. The cause of the fatigue crack growth is also discussed.展开更多
For the growth and departure of bubbles from an orifice, a free energy lattice Boltzmann model is adopted to deal with this complex multiphase flow phenomenon. A virtual layer is set at the boundary of the flow domain...For the growth and departure of bubbles from an orifice, a free energy lattice Boltzmann model is adopted to deal with this complex multiphase flow phenomenon. A virtual layer is set at the boundary of the flow domain to deal with the no-slip boundary condition. Effects of the viscosity, surface tension, gas inertial force and buoyancy on the characteristics of bubbles when they grow and departure from an orifice in quiescent liquid are studied. The releasing period and departure diameter of the bubble are influenced by the residual gas at the orifice, and the interaction between bubbles is taken into consideration. The relations between the releasing period or departure diameter and the gravity acceleration show fair agreements with previous numerical and theoretical results. And the influence of the gas outflow velocity on bubble formation is discussed as well. For the bubbles growing in cross-flow field, effects of the cross-flow speed and the gas outflow velocity on the bubble formation are discussed, which is related to the application in ship resistance reduction. And optimal choice of the ship speed and gas outflow velocity is studied. Cases in this paper also prove that this high density ratio LBM model has its flexibility and effectiveness on multiphase flow simulations.展开更多
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-12)~~
文摘The research explored effects of cultivation methods on growth, yield and quality of cassava. The results showed that the mulching treatment by direct seed- ing, the mulching treatment by transplanting, and the exposed treatment by trans- planting performed excellently in bringing seedling stage forward, improving germina- tion rate, yield and quality. For example, seedling emergence stages were 36, 31 and 31 d earlier; germination rates improved by 19.24%, 14.29% and 14.29%; yields grew by 41.98%, 26.72% and 11.45%; starch contents increased by 3.50%, 2.10% and 1.40%, respectively. Therefore, cassava in the mulching treatment by direct seeding is characterized by earlier seedling emergence stage, high germination rate, high yield and quality.
基金Supported by the National Natural Science Foundation of China(No.41106134)the National Marine Public Welfare Research Project of China(No.201305043)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A412)the Agriculture Science Technology Achievement Transformation Fund(No.2012GB24910656)
文摘There is substantial individual variation in the growth rates of sea cucumber Apostiehopus japonicus individuals. This necessitates additional work to grade the seed stock and lengthens the production period. We evaluated the influence of three culture methods (free-mixed, isolated-mixed, isolated-alone) on individual variation in growth and assessed the relationship between feeding, energy conversion efficiency, and individual growth variation in individually cultured sea cucumbers. Of the different culture methods, animals grew best when reared in the isolated-mixed treatment (i.e., size classes were held separately), though there was no difference in individual variation in growth between rearing treatment groups. The individual variation in growth was primarily attributed to genetic factors. The difference in food conversion efficiency caused by genetic differences among individuals was thought to be the origin of the variance. The level of individual growth variation may be altered by interactions among individuals and environmental heterogeneity. Our results suggest that, in addition to traditional seed grading, design of a new kind of substrate that changes the spatial distribution of sea cucumbers would effectively enhance growth and reduce individual variation in growth of sea cucumbers in culture.
基金Supported by Key Research and Development Program of Shandong Province(2017CXGC0210)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2017D01)+3 种基金National Key R&D Program of China(2016YFD0201100)National Natural Science Foundation of China(31600021)Modern Agricultural Industry Technology System of China for Apple(CARS-27)Dongying Science and Technology Program(2015GG0104)
文摘In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-reducing methods(deinterlacing,removing every other plant in each row,removing every other plant every other row)on the canopy microenvironment,tree structure,leaf photosynthesis and fruit quality were studied.The results showed that different density-reducing methods significantly reduced the orchard coverage and increased the crown transmittance.Among them,the deinterlacing treatment was the best in improving the population structure of the closed orchard,as it reduced the orchard coverage rate by 55.68 percentage points and the canopy transmittance by 82.38 percentage points,compared with the control(CK).Different density-reducing methods all could significantly reduce the branch amount in the closed orchard and optimized the branch composition.The three density-reducing methods decreased the number of branches per plant by 18.96%,12.41%and 19.58%,respectively,compared with the CK.And compared with the CK,the proportion of short branches and leafy branches to the total branches was increased by 17.13%,14.27%and 7.37%,respectively,and the proportion of long branches and developmental branches to the total branches was decreased by 24.47%,18.04%and 10.79%,respectively.The effects of the different density-reducing methods on the temperature,relative light intensity,SPAD and leaf photosynthetic rate in canopies all followed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing<removing every other plant in each row<removing every other plant every other row<CK.The average single fruit weight(238.3 g),coloring index(89.2),smoothness index(83.2),soluble solid content(15.1%)and high quality fruit rate(82.4%)of the deinterlacing treatment were higher than those of other treatments,and the values were 18.2%,11.4%,5.85%,26.9%and 25.2%higher than the CK,respectively.The use of dein ̄terlacing to reduce density is the best for improving the microenvironment of closed apple orchards and improving the photosynthetic efficiency and fruit quality.
基金Tangshan Science and Technology Planning Project(20150210C)Hebei Provincial Phase II Modern Agricultural Industry Technology System Innovation Team Building Project(HBCT2018120207,HBCT2018160403).
文摘In recent years,plant growth regulators are widely used in agricultural products.As the toxicity of plant growth regulator residues has gained increasing concerns,trace analysis methods for plant growth regulators have been developed.In this paper,the major methods with advantages and disadvantages for the detection and pre-treatment of plant growth regulator residues in agricultural products were summarized,including gas chromatography(GC),high performance liquid chromatography(HPLC),chromatographic technique combined with mass spectrometry,enzyme-linked immunosorbent assay(ELISA),capillary electrophoresis(CE)and so on.Meanwhile,the development prospects were also discussed.
基金Supported by National Key Technologies R&D Program of China(2014BAD16B02-2)Key Research and Development Program of Shandong Province(2017CXGC0210)+1 种基金Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2017D01)Modern Agricultural Industry Technology System of China for Apple(CARS-27)
文摘Water-saving irrigation is an important way to realize the sustainable development of the apple industry.In order to screen the best irrigation pattern for apple,taking 9-year-old‘Yanfu 10'Fuji/Malus robusta apple as the material,the effects of different irrigation methods(drip irrigation,sprinkling irrigation,and flood irrigation) on the growth,fruit quality,and yield of apple trees were studied.The results showed that compared with the flood irrigation,drip irrigation and sprinkling irrigation significantly increased the spring shoot length by 14.8%and 9.1%,respectively,and decreased the autumn shoot length by 11.7% and 8.8%,respectively.Drip irrigation and sprinkling irrigation significantly increased the leaf area,chlorophyll content,and leaf weight,the leaf area increased by 3.0% and 1.9%,respectively,the chlorophyll content increased by 13.9% and 11.5%,respectively,and the leaf weight increased by 5.8% and 5.1%,respectively.Drip irrigation and sprinkling irrigation could slightly increase the single fruit weight and fruit shape index,significantly increase the coloring index and smoothness index.The single fruit weight increased by 3.2% and 1.9%,the coloring index increased by 6.1% and 4.1%,the smoothness index increased by 4.7% and 2.8%,and the proportion of red fruit increased by 4.2% and 2.2%,respectively.The content of soluble solids in drip irrigation and sprinkling irrigation was significantly higher than that in flood irrigation,which was 13.0% and 2.6% higher than CK,respectively.The fruit hardness in drip irrigation and sprinkling irrigation was 7.9% and 2.2% higher than CK,respectively,and that in drip irrigation increased significantly.The yield in drip irrigation and sprinkling irrigation was 12.1% and 8.2% higher than CK,respectively.In conclusion,drip irrigation and sprinkling irrigation could promote the growth of apple trees,improve the fruit quality,and increase the yield of apple trees,and the effect of drip irrigation is better than sprinkling irrigation.
文摘Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, height-growth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
文摘In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of the working space. All possible cubes are searched, and the cube with the maximum volume is selected. The calculation examples show that the method of growth can be used for a variety of industrial robots. The method of growth can determine the test cube and test points of irregular working space according to ISO 9283, and can avoid blindness and randomness in the selection of test points.
基金Projects(11375112,51472155,11275122)supported by the National Natural Science Foundation of China
文摘The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB) furnace were adopted in THM growth, and the effects of the polycrystalline feed on the growth interface were revealed. The morphology of the growth interface of CMT crystal(CMT2) grown from the feed by vertical Bridgman was smoother with lower curvature compared with that of CMT crystal(CMT1) from the feed by rocking furnace. The radial Mn composition and Te inclusion distribution of the CMT wafers were analyzed and correlated to the growth interface. The Mn segregation along the radial direction and Te inclusion density of CMT2 were lower than those of CMT1. The VB method synthesized polycrystalline feed could improve the growth interface morphology, which is beneficial for decreasing the Te inclusions and Mn segregation in CMT wafers.
基金supported by the State Grid Technology Project(No. DG71-17-010)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD 201504019)
文摘Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism.
基金supported by National Natural Science Foundation of China(Grants No.50875174,51175347)Innovation Program of Shanghai Municipal Education Commission(Grant No.13ZZ114)Capacity Building Project of Local University of Shanghai Municipal Science and Technology Commission(Grant No.13160502500)
文摘The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.
基金financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Digital manufacturing platform(Digi Ma P)”(reference number N0002598)supervised by the Korea Institute for Advancement of Technology(KIAT)supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(2019R1A2C4070160)。
文摘To predict the dendrite morphology and microstructure evolution in the solidification of molten metal,numerically,lattice Boltzmann method(LBM)-cellular automata(CA)model has been developed by integrating the LBM to solve the mass transport by diffusion and convection during solidification and the CA to determine the phase transformation with respect to the solid fraction based on the local equilibrium theory.It is successfully validated with analytic solutions such as Lipton-Glicksman-Kurz(LGK)model in static melt,and Oseen-Ivantsov solution under the fluid flow conditions in terms of tip radius and velocity of the dendrite growth.The proposed LBM-CA model does not only describe different types of dendrite formations with respect to various solidification conditions such as temperature gradient and growth rate,but also predict the primary dendrite arm spacing(PDAS)and the secondary dendrite arm spacing(SDAS),quantitatively,in directional solidification(DS)experiment with Ni-based superalloy.
文摘The population balance modeling is regarded as a universally accepted mathematical framework for dynamic simulation of various particulate processes, such as crystallization, granulation and polymerization. This article is concerned with the application of the method of characteristics (MOC) for solving population balance models describing batch crystallization process. The growth and nucleation are considered as dominant phenomena, while the breakage and aggregation are neglected. The numerical solutions of such PBEs require high order accuracy due to the occurrence of steep moving fronts and narrow peaks in the solutions. The MOC has been found to be a very effective technique for resolving sharp discontinuities. Different case studies are carried out to analyze the accuracy of proposed algorithm. For validation, the results of MOC are compared with the available analytical solutions and the results of finite volume schemes. The results of MOC were found to be in good agreement with analytical solutions and superior than those obtained by finite volume schemes.
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
基金supported by the Open Fund(PLN0805) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University (SWPU),China
文摘Different morphologies of zinc oxide(ZnO),including microrods,hexagonal pyramid-like rods and flower-like rod aggregates,had been synthesized,respectively,on glass substrates by controlling the reaction conditions(such as precursor concentration,reaction time and pH value) of hydrothermal method.The morphologies of the as-obtained ZnO were observed with scanning electron microscopy and transmission electron microscopy.Also,the crystalline natures of different ZnO crystals were analyzed with X-ray diffraction.The possible growth mechanism of ZnO crystals with different morphologies was discussed.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0704200)the National Natural Science Foundation of China(Grant Nos.11822411 and 11961160699)+4 种基金the Strategic Priority Research Program(B)of the CAS(Grants Nos.XDB25000000 and XDB33000000)the K.C.Wong Education Foundation(Grant No.GJTD-2020-01)the Youth Innovation Promotion Association of CAS(Grant No.Y202001)the Postdoctoral Innovative Talent program(Grant No.BX2021018)the China Postdoctoral Science Foundation(Grant No.2021M700250)。
文摘High-quality superconducting Ca_(1-x)Na_(x)Fe_(2)As_(2)single crystals have been successfully grown by the NaAs-flux method,with sodium doping level x=0.4–0.64.The typical sizes of these crystals are more than 10 mm in ab-plane and~0.1 mm along c-axis in thickness.X-ray diffraction,resistance and magnetization measurements are carried out to characterize the quality of these crystals.While no signature of magnetic phase transitions is detected in the normal state,bulk superconductivity is found for these samples,with a sharp transition at T_(c) ranging from 19.8 K(x=0.4)to 34.8 K(x=0.64).The doping dependences of the c-axis parameter and T_(c) are consistent with previous reports,suggesting a possible connection between the lattice parameters and superconductivity.
基金Supported by TOTAL(DS-2885)the National Natural Science Foundation of China(91434201,21422608)the “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA07080000)
文摘The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.
文摘Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material was numerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domain of undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solved using the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patterns was shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.
文摘Fatigue crack propagation characteristics of a diesel engine crankshaft are studied by measuring the fatigue crack growth rate using a frequency sweep method on a resonant fatigue test rig. Based on the phenomenon that the system frequency will change when the crack becomes large, this method can be directly applied to a complex component or structure. Finite element analyses (FEAs) are performed to calibrate the relation between the frequency change and the crack size, and to obtain the natural frequency of the test rig and the stress intensity factor (SIF) of growing cracks. The crack growth rate i.e. da/dN-AK of each crack size is obtained by combining the testing-time monitored data and FEA results. The results show that the crack growth rate of engine crankshaft, which is a component with complex geometry and special surface treatment, is quite different from that of a pure material. There is an apparent turning point in the Paris's crack partition. The cause of the fatigue crack growth is also discussed.
基金financially supported by the National Key R&D Program of China(Grant No.2018YFC0308900)the Industrial Technology Development Program(Grant No.JCKY2018604C010)Shenzhen Special Fund for Future Industries(Grant No.JCYJ20160331163751413)
文摘For the growth and departure of bubbles from an orifice, a free energy lattice Boltzmann model is adopted to deal with this complex multiphase flow phenomenon. A virtual layer is set at the boundary of the flow domain to deal with the no-slip boundary condition. Effects of the viscosity, surface tension, gas inertial force and buoyancy on the characteristics of bubbles when they grow and departure from an orifice in quiescent liquid are studied. The releasing period and departure diameter of the bubble are influenced by the residual gas at the orifice, and the interaction between bubbles is taken into consideration. The relations between the releasing period or departure diameter and the gravity acceleration show fair agreements with previous numerical and theoretical results. And the influence of the gas outflow velocity on bubble formation is discussed as well. For the bubbles growing in cross-flow field, effects of the cross-flow speed and the gas outflow velocity on the bubble formation are discussed, which is related to the application in ship resistance reduction. And optimal choice of the ship speed and gas outflow velocity is studied. Cases in this paper also prove that this high density ratio LBM model has its flexibility and effectiveness on multiphase flow simulations.