Conductive substrates with low cost,lightweight,and chemical stability have been highly recognized as alternative current collectors for energy storage devices.Graphite foil is promising to fulfill these requests,wher...Conductive substrates with low cost,lightweight,and chemical stability have been highly recognized as alternative current collectors for energy storage devices.Graphite foil is promising to fulfill these requests,whereas the inert surface chemistry denies its possibility as the carrier with high-mass loading active species.Herein,we report a facile yet efficient laser-mediated strategy to fast regulate graphite foils for robustly loading active species.The smooth and hydrophobic graphite foil surface turned to be a rough,super-hydrophilic one containing oxygen-rich clusters after lasering.The reconstructed surface affords anchors for active species,such as nanostruetured MnO_(2),FeOOH,and Fe_(2)O_(3),with the highest loading mass of 20 mg·cm^(-2).The high-mass loading MnO_(2)electrode offers an areal capacitance of 3933 mF·cm^(-2)at 1 mA·cm^(-2).Then,the asymmetric supercapacitor,fabricated by MnO_(2)and Fe_(2)O_(3)deposited laser-irradiated graphite foils,exhibits improved performance with high energy density,large power capability,and long-term stability.The strategy suggests a reliable way to produce alternative current collectors for robust energy storage devices.展开更多
Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion stora...Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion storage due to the properties of its excellent conductivity and inherent theoretical capacity.However,the poor cycling stability and low loadings of PANI limit its application in energy storage.In this study,PANI-x electrodes with high mass loadings are successfully prepared by the electrodeposition method for reversible AlCl_(2)^(+)storage.Among them,the PANI-2 electrode possesses the highest areal capacity(0.59 and 0.51 mAh cm^(−2)at the current density of 0.5 and 10 mA cm^(−2))and excellent cycling stability in saturated AlCl3.Ex situ N 1s fitting spectra of PANI-2 and molecular dynamics simulations of 1 M,3 M,and saturated AlCl_(3)electrolytes demonstrate that PANI can achieve reversible redox reactions in saturated AlCl3,thereby achieving its excellent stability.Density functional theory calculations and ex situ spectra characterizations of PANI-2 demonstrate the insertion/de-insertion mechanism in the form of AlCl_(2)^(+)ions.In conclusion,PANI-2|Saturated AlCl_(3)|EG(exfoliated graphite foil)full cell is assembled successfully.This work provides promising guidance for the preparation of high-loading electrodes for AIBs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21975287,22179145 and 22138013)Shandong Provincial Natural Science Foundation(No.ZR2020ZD08)+1 种基金the Startup Support Grant from China University of Petroleum(East China)the Technological Development Grant from Shandong Energy Group Co.,Ltd
文摘Conductive substrates with low cost,lightweight,and chemical stability have been highly recognized as alternative current collectors for energy storage devices.Graphite foil is promising to fulfill these requests,whereas the inert surface chemistry denies its possibility as the carrier with high-mass loading active species.Herein,we report a facile yet efficient laser-mediated strategy to fast regulate graphite foils for robustly loading active species.The smooth and hydrophobic graphite foil surface turned to be a rough,super-hydrophilic one containing oxygen-rich clusters after lasering.The reconstructed surface affords anchors for active species,such as nanostruetured MnO_(2),FeOOH,and Fe_(2)O_(3),with the highest loading mass of 20 mg·cm^(-2).The high-mass loading MnO_(2)electrode offers an areal capacitance of 3933 mF·cm^(-2)at 1 mA·cm^(-2).Then,the asymmetric supercapacitor,fabricated by MnO_(2)and Fe_(2)O_(3)deposited laser-irradiated graphite foils,exhibits improved performance with high energy density,large power capability,and long-term stability.The strategy suggests a reliable way to produce alternative current collectors for robust energy storage devices.
基金supported by the National Natural Science Foundation of China(Grant No.21906015)the Fundamental Research Funds for the Central Universities(Grant No.N2205006 and N2225013).
文摘Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion storage due to the properties of its excellent conductivity and inherent theoretical capacity.However,the poor cycling stability and low loadings of PANI limit its application in energy storage.In this study,PANI-x electrodes with high mass loadings are successfully prepared by the electrodeposition method for reversible AlCl_(2)^(+)storage.Among them,the PANI-2 electrode possesses the highest areal capacity(0.59 and 0.51 mAh cm^(−2)at the current density of 0.5 and 10 mA cm^(−2))and excellent cycling stability in saturated AlCl3.Ex situ N 1s fitting spectra of PANI-2 and molecular dynamics simulations of 1 M,3 M,and saturated AlCl_(3)electrolytes demonstrate that PANI can achieve reversible redox reactions in saturated AlCl3,thereby achieving its excellent stability.Density functional theory calculations and ex situ spectra characterizations of PANI-2 demonstrate the insertion/de-insertion mechanism in the form of AlCl_(2)^(+)ions.In conclusion,PANI-2|Saturated AlCl_(3)|EG(exfoliated graphite foil)full cell is assembled successfully.This work provides promising guidance for the preparation of high-loading electrodes for AIBs.