期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Reproducible Learning of Gaussian Graphical Models via Graphical Lasso Multiple Data Splitting
1
作者 Kang Hu Danning Li Binghui Liu 《Acta Mathematica Sinica,English Series》 2025年第2期553-568,共16页
Gaussian graphical models(GGMs) are widely used as intuitive and efficient tools for data analysis in several application domains. To address the reproducibility issue of structure learning of a GGM, it is essential t... Gaussian graphical models(GGMs) are widely used as intuitive and efficient tools for data analysis in several application domains. To address the reproducibility issue of structure learning of a GGM, it is essential to control the false discovery rate(FDR) of the estimated edge set of the graph in terms of the graphical model. Hence, in recent years, the problem of GGM estimation with FDR control is receiving more and more attention. In this paper, we propose a new GGM estimation method by implementing multiple data splitting. Instead of using the node-by-node regressions to estimate each row of the precision matrix, we suggest directly estimating the entire precision matrix using the graphical Lasso in the multiple data splitting, and our calculation speed is p times faster than the previous. We show that the proposed method can asymptotically control FDR, and the proposed method has significant advantages in computational efficiency. Finally, we demonstrate the usefulness of the proposed method through a real data analysis. 展开更多
关键词 False discovery rate Gaussian graphical model multiple data splitting graphical Lasso
原文传递
A New Algorithm for Decomposition of Graphical Models 被引量:1
2
作者 Ping-feng XU Jian-hua GUO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第3期571-582,共12页
In this paper, we combine Leimer's algorithm with MCS-M algorithm to decompose graphical models into marginal models on prime blocks. It is shown by experiments that our method has an easier and faster implementation... In this paper, we combine Leimer's algorithm with MCS-M algorithm to decompose graphical models into marginal models on prime blocks. It is shown by experiments that our method has an easier and faster implementation than Leimer's algorithm. 展开更多
关键词 DECOMPOSITION graphical models MCS-M algorithm Leimer's algorithm prime blocks
原文传递
Modeling correlated samples via sparse matrix Gaussian graphical models 被引量:1
3
作者 Yi-zhou HE Xi CHEN Hao WANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第2期107-117,共11页
A new procedure of learning in Gaussian graphical models is proposed under the assumption that samples are possibly dependent.This assumption,which is pragmatically applied in various areas of multivariate analysis ra... A new procedure of learning in Gaussian graphical models is proposed under the assumption that samples are possibly dependent.This assumption,which is pragmatically applied in various areas of multivariate analysis ranging from bioinformatics to finance,makes standard Gaussian graphical models(GGMs) unsuitable.We demonstrate that the advantage of modeling dependence among samples is that the true discovery rate and positive predictive value are improved substantially than if standard GGMs are applied and the dependence among samples is ignored.The new method,called matrix-variate Gaussian graphical models(MGGMs),involves simultaneously modeling variable and sample dependencies with the matrix-normal distribution.The computation is carried out using a Markov chain Monte Carlo(MCMC) sampling scheme for graphical model determination and parameter estimation.Simulation studies and two real-world examples in biology and finance further illustrate the benefits of the new models. 展开更多
关键词 Gaussian graphical models Hyper-inverse Wishart distributions Mutual fund evaluation NETWORK
原文传递
Compression schemes for concept classes induced by three types of discrete undirected graphical models
4
作者 Tingting Luo Benchong Li 《Statistical Theory and Related Fields》 CSCD 2023年第4期287-295,共9页
Sample compression schemes were first proposed by Littlestone and Warmuth in 1986.Undi-rected graphical model is a powerful tool for classification in statistical learning.In this paper,we consider labelled compressio... Sample compression schemes were first proposed by Littlestone and Warmuth in 1986.Undi-rected graphical model is a powerful tool for classification in statistical learning.In this paper,we consider labelled compression schemes for concept classes induced by discrete undirected graphical models.For the undirected graph of two vertices with no edge,where one vertex takes two values and the other vertex can take any finite number of values,we propose an algorithm to establish a labelled compression scheme of size VC dimension of associated concept class.Further,we extend the result to other two types of undirected graphical models and show the existence of labelled compression schemes of size VC dimension for induced concept classes.The work of this paper makes a step forward in solving sample compression problem for concept class induced by a general discrete undirected graphical model. 展开更多
关键词 Discrete undirected graphical models concept classes VC dimension sample compression schemes
原文传递
Decomposition of Covariate-Dependent Graphical Models with Categorical Data
5
作者 Binghui Liu Jianhua Guo 《Communications in Mathematical Research》 CSCD 2023年第3期414-436,共23页
Graphical models are wildly used to describe conditional dependence relationships among interacting random variables.Among statistical inference problems of a graphical model,one particular interest is utilizing its i... Graphical models are wildly used to describe conditional dependence relationships among interacting random variables.Among statistical inference problems of a graphical model,one particular interest is utilizing its interaction structure to reduce model complexity.As an important approach to utilizing structural information,decomposition allows a statistical inference problem to be divided into some sub-problems with lower complexities.In this paper,to investigate decomposition of covariate-dependent graphical models,we propose some useful definitions of decomposition of covariate-dependent graphical models with categorical data in the form of contingency tables.Based on such a decomposition,a covariate-dependent graphical model can be split into some sub-models,and the maximum likelihood estimation of this model can be factorized into the maximum likelihood estimations of the sub-models.Moreover,some sufficient and necessary conditions of the proposed definitions of decomposition are studied. 展开更多
关键词 COLLAPSIBILITY contingency tables covariate-dependent DECOMPOSITION graphical models
原文传递
A two-step method for estimating high-dimensional Gaussian graphical models
6
作者 Yuehan Yang Ji Zhu 《Science China Mathematics》 SCIE CSCD 2020年第6期1203-1218,共16页
The problem of estimating high-dimensional Gaussian graphical models has gained much attention in recent years. Most existing methods can be considered as one-step approaches, being either regression-based or likeliho... The problem of estimating high-dimensional Gaussian graphical models has gained much attention in recent years. Most existing methods can be considered as one-step approaches, being either regression-based or likelihood-based. In this paper, we propose a two-step method for estimating the high-dimensional Gaussian graphical model. Specifically, the first step serves as a screening step, in which many entries of the concentration matrix are identified as zeros and thus removed from further consideration. Then in the second step, we focus on the remaining entries of the concentration matrix and perform selection and estimation for nonzero entries of the concentration matrix. Since the dimension of the parameter space is effectively reduced by the screening step,the estimation accuracy of the estimated concentration matrix can be potentially improved. We show that the proposed method enjoys desirable asymptotic properties. Numerical comparisons of the proposed method with several existing methods indicate that the proposed method works well. We also apply the proposed method to a breast cancer microarray data set and obtain some biologically meaningful results. 展开更多
关键词 covariance estimation graphical model penalized likelihood sparse regression two-step method
原文传递
Probabilistic graphical models in energy systems:A review
7
作者 Tingting Li Yang Zhao +3 位作者 Ke Yan Kai Zhou Chaobo Zhang Xuejun Zhang 《Building Simulation》 SCIE EI CSCD 2022年第5期699-728,共30页
Probabilistic graphical models(PGMs)can effectively deal with the problems of energy consumption and occupancy prediction,fault detection and diagnosis,reliability analysis,and optimization in energy systems.Compared ... Probabilistic graphical models(PGMs)can effectively deal with the problems of energy consumption and occupancy prediction,fault detection and diagnosis,reliability analysis,and optimization in energy systems.Compared with the black-box models,PGMs show advantages in model interpretability,scalability and reliability.They have great potential to realize the true artificial intelligence in energy systems of the next generation.This paper intends to provide a comprehensive review of the PGM-based approaches published in the last decades.It reveals the advantages,limitations and potential future research directions of the PGM-based approaches for energy systems.Two types of PGMs are summarized in this review,including static models(SPGMs)and dynamic models(DPGMs).SPGMs can conduct probabilistic inference based on incomplete,uncertain or even conflicting information.SPGM-based approaches are proposed to deal with various management tasks in energy systems.They show outstanding performance in fault detection and diagnosis of energy systems.DPGMs can represent a dynamic and stochastic process by describing how its state changes with time.DPGM-based approaches have high accuracy in predicting the energy consumption,occupancy and failures of energy systems.In the future,a unified framework is suggested to fuse the knowledge-driven and data-driven PGMs for achieving better performances.Universal PGM-based approaches are needed that can be adapted to various energy systems.Hybrid algorithms would outperform the basic PGMs by integrating advanced techniques such as deep learning and first-order logic. 展开更多
关键词 probabilistic graphical model energy system Bayesian network-dynamic Bayesian network Markov chain hidden Markov model
原文传递
Systemic Risk of Conventional and Islamic Banks: Comparison with Graphical Network Models
8
作者 Shatha Qamhieh Hashem Paolo Giudici 《Applied Mathematics》 2016年第17期2079-2096,共19页
The main aim of this paper is to compare the stability, in terms of systemic risk, of conventional and Islamic banking systems. To this aim, we propose correlation network models for stock market returns based on grap... The main aim of this paper is to compare the stability, in terms of systemic risk, of conventional and Islamic banking systems. To this aim, we propose correlation network models for stock market returns based on graphical Gaussian distributions, which allows us to capture the contagion effects that move along countries. We also consider Bayesian graphical models, to account for model uncertainty in the measurement of financial systems interconnectedness. Our proposed model is applied to the Middle East and North Africa (MENA) region banking sector, characterized by the presence of both conventional and Islamic banks, for the period from 2007 to the beginning of 2014. Our empirical findings show that there are differences in the systemic risk and stability of the two banking systems during crisis times. In addition, the differences are subject to country specific effects that are amplified during crisis period. 展开更多
关键词 Financial Stability Centrality Measures graphical Gaussian models Islamic Banks Conventional Banks Systemic Risk
在线阅读 下载PDF
Enhancing Feature Discretization in Alarm and Fire Detection Systems Using Probabilistic Inference Models
9
作者 Joe Essien 《Journal of Computer and Communications》 2023年第7期140-155,共16页
Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and r... Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and reducing the frequency of erroneous fire alerts, thereby enhancing the effectiveness of numerous safety monitoring systems. This research explores the development of optimized probabilistic graphic models for the discretization thresholds of alarm system predictor variables. The study presents a statistical model framework that increases the efficacy of fire detection by predicting the discretization thresholds of alarm system predictor variable fluctuations used to detect the onset of fire. The work applies the Bayesian networks and probabilistic visual models to reveal the specific characteristics required to cope with fire detection strategies and patterns. The adopted methodology utilizes a combination of prior knowledge and statistical data to draw conclusions from observations. Utilizing domain knowledge to compute conditional dependencies between network variables enabled predictions to be made through the application of specialized analytical and simulation techniques. 展开更多
关键词 Neural Network DISCRETIZATION Alarm Systems graphical models Machine Learning
在线阅读 下载PDF
A graphical model for haloanhydrite components and P-wave velocity:A case study of haloanhydrites in Amu Darya Basin 被引量:2
10
作者 Guo Tong-Cui Wang Hong-Jun +4 位作者 Mu Long-Xin Zhang Xing-Yang Ma Zhi Tian Yu Li Hao-Chen 《Applied Geophysics》 SCIE CSCD 2016年第3期459-468,579,共11页
Wave velocities in haloanhydrites are difficult to determine and significantly depend on the mineralogy. We used petrophysical parameters to study the wave velocity in haloanhydrites in the Amur Darya Basin and constr... Wave velocities in haloanhydrites are difficult to determine and significantly depend on the mineralogy. We used petrophysical parameters to study the wave velocity in haloanhydrites in the Amur Darya Basin and constructed a template of the relation between haloanhydrite mineralogy (anhydrite, salt, mudstone, and pore water) and wave velocities. We used the relation between the P-wave rnoduli ratio and porosity as constraint and constructed a graphical model (petrophysical template) for the relation between wave velocity, mineral content and porosity. We tested the graphical model using rock core and well logging data. 展开更多
关键词 SALT ANHYDRITE graphical model P-wave velocity Ainu Darya Basin
在线阅读 下载PDF
Graphical model construction based on evolutionary algorithms
11
作者 Youlong YANG Yan WU Sanyang LIU 《控制理论与应用(英文版)》 EI 2006年第4期349-354,共6页
Using Bayesian networks to model promising solutions from the current population of the evolutionary algorithms can ensure efficiency and intelligence search for the optimum. However, to construct a Bayesian network t... Using Bayesian networks to model promising solutions from the current population of the evolutionary algorithms can ensure efficiency and intelligence search for the optimum. However, to construct a Bayesian network that fits a given dataset is a NP-hard problem, and it also needs consuming mass computational resources. This paper develops a methodology for constructing a graphical model based on Bayesian Dirichlet metric. Our approach is derived from a set of propositions and theorems by researching the local metric relationship of networks matching dataset. This paper presents the algorithm to construct a tree model from a set of potential solutions using above approach. This method is important not only for evolutionary algorithms based on graphical models, but also for machine learning and data mining. The experimental results show that the exact theoretical results and the approximations match very well. 展开更多
关键词 graphical model Evolutionary algorithms Bayesian network Tree models Bayesian Dirichlet metric
在线阅读 下载PDF
VIDEO MULTI-TARGET TRACKING BASED ON PROBABILISTIC GRAPHICAL MODEL
12
作者 Xu Feng Huang Chenrong +1 位作者 Wu Zhengjun Xu Lizhong 《Journal of Electronics(China)》 2011年第4期548-557,共10页
In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce... In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm. 展开更多
关键词 Video tracking Multi-target tracking Data association Probabilistic graphical model Particle filter
在线阅读 下载PDF
Predictive factors and model validation of post-colon polyp surgery Helicobacter pylori infection 被引量:4
13
作者 Zheng-Sen Zhang 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第1期173-185,共13页
BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the ris... BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the risk factors for post-colon polyp surgery,H.pylori infection,and its correlation with pathologic type.METHODS Eighty patients who underwent colon polypectomy in our hospital between January 2019 and January 2023 were retrospectively chosen.They were then randomly split into modeling(n=56)and model validation(n=24)sets using R.The modeling cohort was divided into an H.pylori-infected group(n=37)and an H.pylori-uninfected group(n=19).Binary logistic regression analysis was used to analyze the factors influencing the occurrence of H.pylori infection after colon polyp surgery.A roadmap prediction model was established and validated.Finally,the correlation between the different pathological types of colon polyps and the occurrence of H.pylori infection was analyzed after colon polyp surgery.RESULTS Univariate results showed that age,body mass index(BMI),literacy,alcohol consumption,polyp pathology type,high-risk adenomas,and heavy diet were all influential factors in the development of H.pylori infection after intestinal polypectomy.Binary multifactorial logistic regression analysis showed that age,BMI,and type of polyp pathology were independent predictors of the occurrence of H.pylori infection after intestinal polypectomy.The area under the receiver operating characteristic curve was 0.969[95%confidence interval(95%CI):0.928–1.000]and 0.898(95%CI:0.773–1.000)in the modeling and validation sets,respectively.The slope of the calibration curve of the graph was close to 1,and the goodness-of-fit test was P>0.05 in the two sets.The decision analysis curve showed a high rate of return in both sets.The results of the correlation analysis between different pathological types and the occurrence of H.pylori infection after colon polyp surgery showed that hyperplastic polyps,inflammatory polyps,and the occurrence of H.pylori infection were not significantly correlated.In contrast,adenomatous polyps showed a significant positive correlation with the occurrence of H.pylori infection.CONCLUSION Age,BMI,and polyps of the adenomatous type were independent predictors of H.pylori infection after intestinal polypectomy.Moreover,the further constructed column-line graph prediction model of H.pylori infection after intestinal polypectomy showed good predictive ability. 展开更多
关键词 Colon polyps Helicobacter pylori Risk factors Pathologic type Columnar graphic modeling
暂未订购
Modeling and Integration Method of Sys ML Model for Complex Business Scenarios 被引量:1
14
作者 Yu Bing An Baoran Zhao Shicao 《系统仿真学报》 CAS CSCD 北大核心 2024年第12期2797-2812,共16页
The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various dis... The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various disciplinary models is extremely complicated.In the modeling and integration process,extensive customized development is needed to realize model integration and interoperability in different business scenarios.Meanwhile,the differences in modeling and interaction between different modeling tools make it difficult to support the consistent representation of models in complex scenarios.To improve the efficiency of system modeling and integration in complex business scenarios,a system modeling and integration method was proposed.This method took the Sys ML language kernel as the core and system model function integration as the main line.Through the technical means of model view separation,abstract operation interface,and model view configuration,the model modeling and integration of multi-user,multi-model,multi-view,and different business logic in complex business scenarios were realized. 展开更多
关键词 SYSML model-based system engineering(MBSE) SERVICE graphical modeling V-business
原文传递
Highly Regional Genes:graph-based gene selection for single-cell RNA-seq data 被引量:1
15
作者 Yanhong Wu Qifan Hu +6 位作者 Shicheng Wang Changyi Liu Yiran Shan Wenbo Guo Rui Jiang Xiaowo Wang Jin Gu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第9期891-899,共9页
Gene selection is an indispensable step for analyzing noisy and high-dimensional single-cell RNA-seq(scRNA-seq)data.Compared with the commonly used variance-based methods,by mimicking the human maker selection in the ... Gene selection is an indispensable step for analyzing noisy and high-dimensional single-cell RNA-seq(scRNA-seq)data.Compared with the commonly used variance-based methods,by mimicking the human maker selection in the 2D visualization of cells,a new feature selection method called HRG(Highly Regional Genes)is proposed to find the informative genes,which show regional expression patterns in the cell-cell similarity network.We mathematically find the optimal expression patterns that can maximize the proposed scoring function.In comparison with several unsupervised methods,HRG shows high accuracy and robustness,and can increase the performance of downstream cell clustering and gene correlation analysis.Also,it is applicable for selecting informative genes of sequencing-based spatial transcriptomic data. 展开更多
关键词 Single-cell RNA-sequencing Feature selection Spatially resolved transcriptomic data Regional patterns graphical models
原文传递
A framework for computer vision-based health monitoring of a truss structure subjected to unknown excitations 被引量:1
16
作者 Mariusz Ostrowski Bartlomiej Blachowski +3 位作者 Bartosz Wójcik Mateusz Żarski Piotr Tauzowski Łukasz Jankowski 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期1-17,共17页
Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points o... Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points of a structure.However,CV methods produce significantly more measurement errors.Thus,computer vision-based structural health monitoring(CVSHM)requires appropriate methods of damage assessment that are robust with respect to highly contaminated measurement data.In this paper a complete CVSHM framework is proposed,and three damage assessment methods are tested.The first is the augmented inverse estimate(AIE),proposed by Peng et al.in 2021.This method is designed to work with highly contaminated measurement data,but it fails with a large noise provided by CV measurement.The second method,as proposed in this paper,is based on the AIE,but it introduces a weighting matrix that enhances the conditioning of the problem.The third method,also proposed in this paper,introduces additional constraints in the optimization process;these constraints ensure that the stiffness of structural elements can only decrease.Both proposed methods perform better than the original AIE.The latter of the two proposed methods gives the best results,and it is robust with respect to the selected coefficients,as required by the algorithm. 展开更多
关键词 computer vision structural health monitoring physics-based graphical models augmented inverse estimate model updating non-negative least square method
在线阅读 下载PDF
Mining Data Correlation from Multi-Faceted Sensor Data in Internet of Things 被引量:1
17
作者 曹栋 乔秀全 +2 位作者 Judith Gelernter 李晓峰 孟洛明 《China Communications》 SCIE CSCD 2011年第1期132-138,共7页
Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the I... Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the Internet of Things contains many sorts of sensors, the measurement data collected by these sensors are multi-type data, sometimes contai- ning temporal series information. If we separately deal with different sorts of data, we will miss useful information. This paper proposes a method to dis- cover the correlation in multi-faceted data, which contains many types of data with temporal informa- tion, and our method can simultaneously deal with multi-faceted data. We transform high-dimensional multi-faeeted data into lower-dimensional data which is set as multivariate Gaussian Graphical Models, then mine the correlation in multi-faceted data by discover the structure of the multivariate Gausslan Graphical Models. With a real data set, we verifies our method, and the experiment demonstrates that the method we propose can correctly fred out the correlation among multi-faceted meas- urement data. 展开更多
关键词 multi-faceted data SENSORS Internet of Things Gaussian graphical models
在线阅读 下载PDF
Probabilistic Graphical Model-Based Operational Reliability-Centric Design of Offshore Wind Farm Feeder Layouts
18
作者 Qiuyu Lu Yunqi Yan +4 位作者 Yang Liu Ying Chen Yinguo Yang Tannan Xiao Guobing Wu 《Energy Engineering》 2025年第12期4799-4814,共16页
The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system(ECS)designs that prioritize lifetime operational reliability.Traditional optimization approaches often sim... The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system(ECS)designs that prioritize lifetime operational reliability.Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints.This paper introduces a novel,two-stage optimization framework for offshore wind farm(OWF)ECS planning that systematically incorporates reliability.The first stage employs Mixed-Integer Linear Programming(MILP)to determine an optimal radial network topology,considering linearized reliability approximations and geographical constraints.The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained Program(MIQCP).This stage leverages a dynamic-aware adaptation of Multi-Source Multi-Terminal Network Reliability(MSMT-NR)assessment,with its inherent nonlinear equations successfully transformed into a solvable MIQCP form for loopy networks.A benchmark case study demonstrates the framework’s efficacy,illustrating how increasing the emphasis on reliability leads to more distributed and interconnected network topologies,effectively balancing investment costs against enhanced system resilience. 展开更多
关键词 Offshore wind farm feeder layout optimization network reliability nonlinear optimization probabilistic graphical model
在线阅读 下载PDF
An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
19
作者 Erin E.Kaiser J.C.Poythress +6 位作者 Kelly M.Scheulin Brian J.Jurgielewicz Nicole A.Lazar Cheolwoo Park Steven L.Stice Jeongyoun Ahn Franklin D.West 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期842-850,共9页
Magnetic resonance imaging(MRI)is a clinically relevant,real-time imaging modality that is frequently utilized to assess stroke type and severity.However,specific MRI biomarkers that can be used to predict long-term f... Magnetic resonance imaging(MRI)is a clinically relevant,real-time imaging modality that is frequently utilized to assess stroke type and severity.However,specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need.Consequently,the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke.Stroke was induced via permanent middle cerebral artery occlusion.At 24 hours post-stroke,MRI analysis revealed focal ischemic lesions,decreased diffusivity,hemispheric swelling,and white matter degradation.Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke.Gaussian graphical models identified specific MRI outputs and functional recovery variables,including white matter integrity and gait performance,that exhibited strong conditional dependencies.Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance.Consequently,these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities(e.g.,white matter composition)that have proven to be critical in ischemic stroke pathophysiology.The study was approved by the University of Georgia(UGA)Institutional Animal Care and Use Committee(IACUC;Protocol Number:A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5)on November 22,2017. 展开更多
关键词 behavior testing canonical correlation analysis gait analysis Gaussian graphical models ischemic stroke magnetic resonance imaging pig model principal component analysis
暂未订购
Characterizing functional consequences of DNA copy number alterations in breast and ovarian tumors by spaceMap
20
作者 Christopher J.Conley Umut Ozbek +1 位作者 Pei Wang Jie Peng 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第7期361-371,共11页
We propose a novel conditional graphical model -- spaceMap -- to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation o... We propose a novel conditional graphical model -- spaceMap -- to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation of DNA copy number alterations (CNAs) on downstream protein levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly models high dimensional protein levels as responses and high dimensional CNAs as predictors. In this setup, spaceMap infers an undirected network among proteins together with a directed network encoding how CNAs perturb the protein network, spaceMap can be applied to learn other types of regulatory relationships from high dimensional molecular profiles, especially those exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting regulatory relationships over competing methods. Additionally, spaceMap includes a network analysis toolkit for biological interpretation of inferred networks. We applies spaceMap to the CNAs, gene expression and proteomics data sets from CPTAC-TCGA breast (n = 77) and ovarian (n = 174) cancer studies. Each cancer exhibits disruption of'ion transmembrane transport' and 'regulation from RNA polymerase lI promoter' by CNA events unique to each cancer. Moreover, using protein levels as a response yields a more functionally-enriched network than using RNA expressions in both cancer types. The network results also help to pinpoint crucial cancer genes and provide insights on the functional consequences of important CNA in breast and ovarian cancers. 展开更多
关键词 Integrative genomics PROTEOGENOMICS Conditional graphical models Network analysis
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部