The minimax path location problem is to find a path P in a graph G such that the maximum distance d_(G)(v,P)from every vertex v∈V(G)to the path P is minimized.It is a well-known NP-hard problem in network optimizatio...The minimax path location problem is to find a path P in a graph G such that the maximum distance d_(G)(v,P)from every vertex v∈V(G)to the path P is minimized.It is a well-known NP-hard problem in network optimization.This paper studies the fixed-parameter solvability,that is,for a given graph G and an integer k,to decide whether there exists a path P in G such that max v∈V(G)d_(G)(v,P)≤k.If the answer is affirmative,then graph G is called k-path-eccentric.We show that this decision problem is NP-complete even for k=1.On the other hand,we characterize the family of 1-path-eccentric graphs,including the traceable,interval,split,permutation graphs and others.Furthermore,some polynomially solvable special graphs are discussed.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10961023)National Natural Science Foundation of China for Young Scholars (Grant No. 11101232)+1 种基金Natural Science Foundation of Qinghai Province for Young Scholars (Grant No. 2011-Z-929Q)Scientific Research Innovation Program of Qinghai Normal University
文摘In the paper, we prove that all generalized cocktail-party graphs with order at least 23 are determined by their adjacency spectra.
文摘The minimax path location problem is to find a path P in a graph G such that the maximum distance d_(G)(v,P)from every vertex v∈V(G)to the path P is minimized.It is a well-known NP-hard problem in network optimization.This paper studies the fixed-parameter solvability,that is,for a given graph G and an integer k,to decide whether there exists a path P in G such that max v∈V(G)d_(G)(v,P)≤k.If the answer is affirmative,then graph G is called k-path-eccentric.We show that this decision problem is NP-complete even for k=1.On the other hand,we characterize the family of 1-path-eccentric graphs,including the traceable,interval,split,permutation graphs and others.Furthermore,some polynomially solvable special graphs are discussed.