期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
A Novel Variable-Fidelity Kriging Surrogate Model Based on Global Optimization for Black-Box Problems
1
作者 Yi Guan Pengpeng Zhi Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 2025年第9期3343-3368,共26页
Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challen... Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challenge to building a VF model is devising an adaptive model updating strategy that jointly selects additional low-fidelity(LF)and/or HF samples.The additional samples must enhance the model accuracy while maximizing the computational efficiency.We propose ISMA-VFEEI,a global optimization framework that integrates an Improved Slime-Mould Algorithm(ISMA)and a Variable-Fidelity Expected Extension Improvement(VFEEI)learning function to construct a VF surrogate model efficiently.First,A cost-aware VFEEI function guides the adaptive LF/HF sampling by explicitly incorporating evaluation cost and existing sample proximity.Second,ISMA is employed to solve the resulting non-convex optimization problem and identify global optimal infill points for model enhancement.The efficacy of ISMA-VFEEI is demonstrated through six numerical benchmarks and one real-world engineering case study.The engineering case study of a high-speed railway Electric Multiple Unit(EMU),the optimization objective of a sanding device attained a minimum value of 1.546 using only 20 HF evaluations,outperforming all the compared methods. 展开更多
关键词 global optimization KRIGING variable-fidelity model slime mould algorithm expected improvement
在线阅读 下载PDF
Certifying the Global Optimality of Quartic Minimization over the Sphere 被引量:2
2
作者 Sheng-Long Hu 《Journal of the Operations Research Society of China》 EI CSCD 2022年第2期241-287,共47页
The quartic minimization over the sphere is an NP-hard problem in the general case.There exist various methods for computing an approximate solution for any given instance.In practice,it is quite often that a global o... The quartic minimization over the sphere is an NP-hard problem in the general case.There exist various methods for computing an approximate solution for any given instance.In practice,it is quite often that a global optimal solution was found but without a certification.We will present in this article two classes of methods which are able to certify the global optimality,i.e.,algebraic methods and semidefinite program(SDP)relaxation methods.Several advances on these topics are summarized,accompanied with some emerged new results.We want to emphasize that for mediumor large-scaled instances,the problem is still a challenging one,due to an apparent limitation on the current force for solving SDP problems and the intrinsic one on the approximation techniques for the problem. 展开更多
关键词 Quartic minimization Tensor SPHERE global optimality Elimination method Critical points EIGENVECTORS Determinant NONDEGENERATE Characteristic polynomial SDP relaxations Moment matrix Flatness POSITIVSTELLENSATZ Nonnegative polynomial Sums of squares Duality
原文传递
Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs
3
作者 Howard Heaton Samy Wu Fung Stanley Osher 《Communications on Applied Mathematics and Computation》 EI 2024年第2期790-810,共21页
Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically o... Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence. 展开更多
关键词 global optimization Moreau envelope HAMILTON-JACOBI Hopf-Lax-Cole-Hopf Proximals Zero-order optimization
在线阅读 下载PDF
Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
4
作者 向依婕 高思妍 +4 位作者 王春雷 方海平 段香梅 郑益峰 张越宇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期429-435,共7页
Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conver... Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds. 展开更多
关键词 PHOTOCATALYSIS first principles calculations multi-objective global optimization
原文传递
Branch and Bound Algorithm for Globally Solving Minimax Linear Fractional Programming
5
作者 WANG Hui-man SHEN Pei-ping LIANG Yu-xin 《Chinese Quarterly Journal of Mathematics》 2024年第4期388-398,共11页
In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,... In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,we convert the problem(MLFP)to a problem(EP2)that is equivalent to it.Secondly,by applying the convex relaxation technique to problem(EP2),a convex quadratic relaxation problem(CQRP)is obtained.Then,the overall framework of the algorithm is given and its convergence is proved,the worst-case iteration number is also estimated.Finally,experimental data are listed to illustrate the effectiveness of the algorithm. 展开更多
关键词 Minimax linear fractional programming global optimal solution Branch and bound
在线阅读 下载PDF
CHAOTIC ANNEALING NEURAL NETWORK FOR GLOBAL OPTIMIZATION OF CONSTRAINED NONLINEAR PROGRAMMING 被引量:1
6
作者 张国平 王正欧 袁国林 《Transactions of Tianjin University》 EI CAS 2001年第3期141-146,共6页
Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield netwo... Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield network,this paper proposes a new chaotic annealing neural network (CANN) for global optimization of continuous constrained non linear programming.It is easy to implement,conceptually simple,and generally applicable.Numerical experiments on severe test functions manifest that CANN is efficient and reliable to search for global optimum and outperforms the existing genetic algorithm GAMAS for the same purpose. 展开更多
关键词 global optimization neural network chaotic noise annealing
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
7
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
Application of Evolution Sequential Number Theoretic Optimization in Global Optimization
8
作者 刘洪谦 袁希钢 方开泰 《Transactions of Tianjin University》 EI CAS 2002年第4期221-225,共5页
Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution i... Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution in probability. In recogniting the state of art status in the discipline, a new approach for global optimization of processes, based on sequential number theoretic optimization (SNTO), is proposed. In this approach, subspaces and feasible points are derived from uniformly scattered points, and iterations over passing the corner of local optimum are enhanced via parallel strategy. The efficiency of the approach proposed is verified by results obtained from various case studies. 展开更多
关键词 global optimization sequential number theoretic optimization parallel optimization
在线阅读 下载PDF
A New Hybrid Method for Constrained Global Optimization
9
作者 杨若黎 吴沧浦 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期16+7-16,共11页
By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of ... By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of the simulated annealing algorithm used in the hybrid method as general as possible, the nonlinear programming neural network is employed at each iteration to find only a feasible solution to the original constrained problem rather than a local optimal solution. Such a feasible solution is obtained by solving an auxiliary optimization problem with a new objective function. The computational results for two numerical examples indicate that the proposed hybrid method for constrained global optimization is not only highly reliable but also much more effcient than the simulated annealing algorithm using the penalty function method to deal with the constraints. 展开更多
关键词 OPTIMIZATION neural networks/global optimization simulated annealing
在线阅读 下载PDF
Optimized Decision-Making Framework for Detecting Important Factors Influencing Students’Innovative Capabilities
10
作者 Chengwen Wu Li Quan +1 位作者 Xiaoqin Zhang Huiling Chen 《Journal of Bionic Engineering》 2025年第4期2075-2114,共40页
Developing innovative capabilities in university students is essential for individual career success and broader societal advancement.This study introduces a predictive Feature Selection(FS)model named bWRBA-SVM-FS,wh... Developing innovative capabilities in university students is essential for individual career success and broader societal advancement.This study introduces a predictive Feature Selection(FS)model named bWRBA-SVM-FS,which combines an enhanced Bat Algorithm(BA)and Support Vector Machine(SVM).To enhance the optimization capability of BA,water follow search and random follow search are introduced to optimize the efficiency and accuracy of the feature subset search.Experimental validation conducted on the IEEE CEC 2017 benchmark functions and the talented innovative capacity dataset demonstrates the efficacy of the proposed method relative to peer and prominent machine learning models.The experimental results reveal that the predictive accuracy of the bWRBA-SVM-FS model is 97.503%,with a sensitivity of 98.391%.Our findings indicate significant predictors of innovation capacity,including project application goals,educational background,and interdisciplinary thinking abilities.The bWRBA-SVM-FS model offers effective strategies for talent selection in higher education,fostering the development of future research leaders. 展开更多
关键词 Innovation capacity Independent thinking Bat algorithm Support vector machine Feature selection global optimization
在线阅读 下载PDF
Fully Compensated Ferrimagnetism with High Magnetic Transition Temperature in a Stable Two-Dimensional Unconventional Stoichiometric CrI Crystal
11
作者 Siyan Gao Yifeng Zheng +2 位作者 Shuqiang He Haiping Fang Yueyu Zhang 《Chinese Physics Letters》 2025年第7期182-205,共24页
Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.A... Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting. 展开更多
关键词 compensated ferrimagnets fully compensated ferrimagnetism spintronic applicationsincluding structural search Cr I global optimization algorithm high magnetic transition temperature two dimensional crystals
原文传递
A parallel chemical reaction optimization method based on preference-based multi-objective expected improvement
12
作者 Mingqi Jiang Zhuo Wang +1 位作者 Zhijian Sun Jian Wang 《Chinese Journal of Chemical Engineering》 2025年第2期82-92,共11页
Optimizing chemical reaction parameters is an expensive optimization problem. Each experiment takes a long time and the raw materials are expensive. High-throughput methods combined with the parallel Efficient Global ... Optimizing chemical reaction parameters is an expensive optimization problem. Each experiment takes a long time and the raw materials are expensive. High-throughput methods combined with the parallel Efficient Global Optimization algorithm can effectively improve the efficiency of the search for optimal chemical reaction parameters. In this paper, we propose a multi-objective populated expectation improvement criterion for providing multiple near-optimal solutions in high-throughput chemical reaction optimization. An l-NSGA2, employing the Pseudo-power transformation method, is utilized to maximize the expected improvement acquisition function, resulting in a Pareto solution set comprising multiple designs. The approximation of the cost function can be calculated by the ensemble Gaussian process model, which greatly reduces the cost of the exact Gaussian process model. The proposed optimization method was tested on a SNAr benchmark problem. The results show that compared with the previous high-throughput experimental methods, our method can reduce the number of experiments by almost half. At the same time, it theoretically enhances temporal and spatial yields while minimizing by-product formation, potentially guiding real chemical reaction optimization. 展开更多
关键词 Algorithm Chemical reaction Computer simulation Efficient global optimization Machine learning
在线阅读 下载PDF
Optimal performance design of bat algorithm:An adaptive multi-stage structure
13
作者 Helong Yu Jiuman Song +4 位作者 Chengcheng Chen Ali Asghar Heidari Yuntao Ma Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期755-814,共60页
The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally opti... The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally optimal solutions for various optimisation problems.Knowing the recent criticises of the originality of equations,the principle of BA is concise and easy to implement,and its mathematical structure can be seen as a hybrid particle swarm with simulated annealing.In this research,the authors focus on the performance optimisation of BA as a solver rather than discussing its originality issues.In terms of operation effect,BA has an acceptable convergence speed.However,due to the low proportion of time used to explore the search space,it is easy to converge prematurely and fall into the local optima.The authors propose an adaptive multi-stage bat algorithm(AMSBA).By tuning the algorithm's focus at three different stages of the search process,AMSBA can achieve a better balance between exploration and exploitation and improve its exploration ability by enhancing its performance in escaping local optima as well as maintaining a certain convergence speed.Therefore,AMSBA can achieve solutions with better quality.A convergence analysis was conducted to demonstrate the global convergence of AMSBA.The authors also perform simulation experiments on 30 benchmark functions from IEEE CEC 2017 as the objective functions and compare AMSBA with some original and improved swarm-based algorithms.The results verify the effectiveness and superiority of AMSBA.AMSBA is also compared with eight representative optimisation algorithms on 10 benchmark functions derived from IEEE CEC 2020,while this experiment is carried out on five different dimensions of the objective functions respectively.A balance and diversity analysis was performed on AMSBA to demonstrate its improvement over the original BA in terms of balance.AMSBA was also applied to the multi-threshold image segmentation of Citrus Macular disease,which is a bacterial infection that causes lesions on citrus trees.The segmentation results were analysed by comparing each comparative algorithm's peak signal-to-noise ratio,structural similarity index and feature similarity index.The results show that the proposed BA-based algorithm has apparent advantages,and it can effectively segment the disease spots from citrus leaves when the segmentation threshold is at a low level.Based on a comprehensive study,the authors think the proposed optimiser has mitigated the main drawbacks of the BA,and it can be utilised as an effective optimisation tool. 展开更多
关键词 bat-inspired algorithm Citrus Macular disease global optimization multi-threshold image segmentation Otsu algorithm
在线阅读 下载PDF
Bat algorithm based on kinetic adaptation and elite communication for engineering problems
14
作者 Chong Yuan Dong Zhao +4 位作者 Ali Asghar Heidari Lei Liu Shuihua Wang Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第4期1174-1200,共27页
The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and stron... The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and strong global search capabilities,this algorithm finds application across diverse optimization problem domains.However,in the face of increasingly complex optimization challenges,the Bat algorithm encounters certain limitations,such as slow convergence and sensitivity to initial solutions.In order to tackle these challenges,the present study incorporates a range of optimization compo-nents into the Bat algorithm,thereby proposing a variant called PKEBA.A projection screening strategy is implemented to mitigate its sensitivity to initial solutions,thereby enhancing the quality of the initial solution set.A kinetic adaptation strategy reforms exploration patterns,while an elite communication strategy enhances group interaction,to avoid algorithm from local optima.Subsequently,the effectiveness of the proposed PKEBA is rigorously evaluated.Testing encompasses 30 benchmark functions from IEEE CEC2014,featuring ablation experiments and comparative assessments against classical algorithms and their variants.Moreover,real-world engineering problems are employed as further validation.The results conclusively demonstrate that PKEBA ex-hibits superior convergence and precision compared to existing algorithms. 展开更多
关键词 Bat algorithm engineering optimization global optimization metaheuristic algorithms
在线阅读 下载PDF
Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC 被引量:95
15
作者 Aijun Zhu Chuanpei Xu +2 位作者 Zhi Li Jun Wu Zhenbing Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期317-328,共12页
A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimi... A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration. 展开更多
关键词 META-HEURISTIC global optimization NP hard problem
在线阅读 下载PDF
Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction 被引量:14
16
作者 LI Yulin LIU Li +1 位作者 LONG Teng DONG Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期928-939,共12页
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho... High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models. 展开更多
关键词 global optimization metamodel-based optimization reduction of design space fuzzy clustering
在线阅读 下载PDF
A New Chaotic Parameters Disturbance Annealing Neural Network for Solving Global Optimization Problems 被引量:15
17
作者 MAWei WANGZheng-Ou 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期385-392,共8页
Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to ... Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to other existing neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the present CPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escape from the attraction of a local minimal solution and with the parameter annealing, our model will converge to the global optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper. The benchmark examples show the present CPDA neural network's merits in nonlinear global optimization. 展开更多
关键词 Hopfield neural network global optimization chaotic parameters disturbance simulated annealing
在线阅读 下载PDF
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
18
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
19
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
20
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部