Located in Southeastern Chad. The Iro lake offers a great opportunity for the study of Precambrian formations and their Phanerozoic cover. Pluton is a Cal-alkaline granite. Due to its geographical location and geologi...Located in Southeastern Chad. The Iro lake offers a great opportunity for the study of Precambrian formations and their Phanerozoic cover. Pluton is a Cal-alkaline granite. Due to its geographical location and geological features, it holds crucial information for understanding the evolution of the Saharan Meta craton (central Africa), which remains poorly studied. One of the objectives is to map the formations Precambrian age in Southeastern Chad. Based on the petrographic and geochemical results, we identified granitoids of pan-African age (biotite granite, aplite granite and pegmatite granite). This Precambrian basement is covered with sedimentary formations (clays, argillites, lateritic cuirasses, etc.). The mineral assemblage is characteristic of acid rocks. Geochemistry reveals rocks with a high SiO2 range (62% - 77%) giving sub-alkaline to calc-alkaline acid rocks with high k (4.62% to 6.39%). The granitoids are classified as S-type hyperaluminous granites. This classification is supported by the presence of peraluminous minerals (e.g., muscovite) within the Iro granitoids, which also have high (>1%). Geochemical variation within the granites is largely due to extensive crystal fractionation. The Pattern of REEs normalized to the primitive mantle shows a pronounced negative Eu anomaly, reflecting the crystallization process and fractional crystallization of plagioclase in the rock, and a positive Yb anomaly. The role of plagioclase fractionation was relatively major during the earlier intrusive stages (consistent with the presence of Eu anomalies) and slightly increased, together with biotite and K-feldspar fractionation, during the later (granitic) rock crystallization. The Pattern of the spider normalized to MORBs shows two pronounced negative anomalies in TiO2 and Cs and a slight negative anomaly in Ba. The loss of Ba, Ti and Cs may be caused by the plagioclase fractionation, apatite and ilmenite crystal. The Ba anomaly is also controlled by the presence of K-feldspar and mica. The observed Ti anomalies are due to the fractionation of magnetite indicating a subduction environment (or remelting of a source from a subduction environment).展开更多
Hemipelagic to pelagic(H/P)marls,representing pelitic deposits,accumulated within the foredeep sub-basin of the Dinaric Foreland Basin(northern Neotethyan margin,present-day Croatia)during the Middle to Late Eocene.Sy...Hemipelagic to pelagic(H/P)marls,representing pelitic deposits,accumulated within the foredeep sub-basin of the Dinaric Foreland Basin(northern Neotethyan margin,present-day Croatia)during the Middle to Late Eocene.Syn-sedimentary tectonic movements,paleogeographic position and exchanges of short-lived hyperthermal episodes affected the sedimentation and related mineral and geochemical record of these deposits.Mineral(clay)assemblages bear signature of prevailing physical weathering with significant illite and chlorite content,but climatic seasonality is suggested by smectite-interlayered phases and sporadical increase of kaolinite content.Illite crystallinity varies significantly,and the lowest crystallinity is recorded by the Lutetian samples.Illite chemistry index is always bellow 0.5,being characteristic for Fe-Mg-rich illite.The geochemical records are the most prominent(CIA up to 76,CIW up to 91)for the Istrian Lutetian(42.3-40.5 Ma),but also for Priabonian(35.8-34.3 Ma)samples of Hvar Island.The ICV values(the lowest 1.40 and the highest 10.85)of all studied samples fall above PAAS(ICV=0.85)and point to their chemical immaturity.The Ga/Rb ratios are lower than 0.2 and K_(2)O/Al_(2)O_(3) ratios are also low(0.16-0.22),implying transition between cold and dry,and warm and humid climate,obviously trending among several warming episodes.展开更多
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying...Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.展开更多
Geological analysis,despite being a long-term method for identifying adverse geology in tunnels,has significant limitations due to its reliance on empirical analysis.The quantitative aspects of geochemical anomalies a...Geological analysis,despite being a long-term method for identifying adverse geology in tunnels,has significant limitations due to its reliance on empirical analysis.The quantitative aspects of geochemical anomalies associated with adverse geology provide a novel strategy for addressing these limitations.However,statistical methods for identifying geochemical anomalies are insufficient for tunnel engineering.In contrast,data mining techniques such as machine learning have demonstrated greater efficacy when applied to geological data.Herein,a method for identifying adverse geology using machine learning of geochemical anomalies is proposed.The method was identified geochemical anomalies in tunnel that were not identified by statistical methods.We by employing robust factor analysis and self-organizing maps to reduce the dimensionality of geochemical data and extract the anomaly elements combination(AEC).Using the AEC sample data,we trained an isolation forest model to identify the multi-element anomalies,successfully.We analyzed the adverse geological features based the multi-element anomalies.This study,therefore,extends the traditional approach of geological analysis in tunnels and demonstrates that machine learning is an effective tool for intelligent geological analysis.Correspondingly,the research offers new insights regarding the adverse geology and the prevention of hazards during the construction of tunnels and underground engineering projects.展开更多
Geochemistry of the fault gouge record information on fault behaviors and environmental conditions.We investigated variations in the mineralogical and geochemical compositions of the fault gouge sampled from the margi...Geochemistry of the fault gouge record information on fault behaviors and environmental conditions.We investigated variations in the mineralogical and geochemical compositions of the fault gouge sampled from the margin zone(MZ)to the slip central zone(CZ)of the fault gouge in the Beichuan-Yingxiu surface rupture zone of the Wenchuan Earthquake.Results show that the clay minerals contents increase from the MZ to CZ,and the quartz and plagioclase contents slight decrease.An increasing enrichment in Al_(2)O_(3),Fe_(2)O_(3),and K_(2)O are observed toward the CZ;the decomposition of quartz and plagioclase,as well as the depletion of Si O_(2),Ca O,Na_2O,and P_(2)O_(5)suggest that the alkaline-earth elements are carried away by the fluids.It can be explained that the stronger coseismic actions in the CZ allow more clay minerals to form,decompose quartz and plagioclase,and alter plagioclase to chlorite.The mass loss in the CZ is larger than that in MZ,which is maybe due to the more concentrated stress in the strongly deformed CZ,however other causes will not be excluded.展开更多
The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and signi...The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.展开更多
This study selects geochemical data of basalts from different seamounts in the Mid-Pacific Mountains province and conducts analyses of major and trace elements as well as Sr-Nd-Pb isotopes to explore the tectonic evol...This study selects geochemical data of basalts from different seamounts in the Mid-Pacific Mountains province and conducts analyses of major and trace elements as well as Sr-Nd-Pb isotopes to explore the tectonic evolution,petrogenesis,and mantle-source magama characteristics of the Mid-Pacific Mountains.The basalts from the Mid-Pacific Mountains are predominantly alkali basalts,rich in alkalies,and changing in potassium.They exhibit geochemical features of ocean island basalts(OIB),with distinct fractionation between light and heavy rare-earth elements and a pronounced Ce negative anomaly(δ_(Ce)=0.16–1.10,average 0.84),along with enrichment in large ion lithophile elements(LILEs).The Mid-Pacific Mountains are intraplate ocean island basalts formed by mantle plume(hotspot)activity,originating mainly from an enriched mantle magma source region,and most of them have undergone low degree of partial melting and a certain degree of crystalline differentiation,with negligible contamination from oceanic crust materials.The Mid-Pacific Mountains exhibit ratios of^(87)Sr/^(86)Sr(i)(0.702733–0.704313,average 0.703452)and^(143)Nd/^(144)Nd(i)(0.512698–0.512996,average 0.512846)which are close to the HIMU mantle endmember,and ratios of 206Pb/204Pb(18.953–19.803),^(207)Pb/^(204)Pb(15.54–15.62)and^(208)Pb/^(204)Pb(38.813–39.514)which are close to the EMII mantle end-member.Combined with the isotopic geochemical characteristics in the West Pacific Seamounts province,the basalts from the Mid-Pacific Mountains were considered to represent a certain proportion of mixing mantle end-members between the HIMU and EMII,possibly formed by the mixing of the HIMU superplume in the South Pacific hotspot region with the EMII secondary mantle plume in the transition zone during their ascent.展开更多
In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain th...In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain the contents of rare earth elements(REE)to explore the degree of preservation of paleo-seawater information by carbonate components and elucidate the provenance relationship between the QDNB and the Yinggehai Basin and the provenance changes in the deep-water area of the QDNB since the Oligocene.The main achievements of this paper are as follows:(1)In the process of extracting the autogenic carbonate,the iron-manganese oxide envelope on the surface of the sediment particles(which can adsorb REE or its complexes in seawater)will partially dissolve into the autogenic carbonate components,thus covering the REE geochem-ical information of paleo-seawater carried by the auto-genic carbonate.Therefore,caution should be exercised when using the geochemical characteristics of REE in the carbonate component of impure carbonate rocks to reflect the sedimentary paleoenvironment.(2)The analysis of the REE geochemical characteristics of multiple cores in the Ying-gehai-QDNB shows that there is a close provenance rela-tionship between the two Basins.The sediments in the central depression area of the Yinggehai Basin and the deep-water area in the western part of the QDNB generally contain more feldspar(Eu-rich)minerals.Since the Eocene,paleo-rivers have carried ultramafic-mafic materials originating from the western South China Sea into the sea.Affected by the transport distance and sea level changes,the content of feldspar(Eu-rich)minerals in the sediments of the QDNB from west to east gradually decreased.展开更多
Subduction zones are critical interfaces for lithospheric volatile fluxes,where complex tectonic and geochemical interactions facilitate the release of gases and fluids from deep-seated reservoirs within the Earth’s ...Subduction zones are critical interfaces for lithospheric volatile fluxes,where complex tectonic and geochemical interactions facilitate the release of gases and fluids from deep-seated reservoirs within the Earth’s crust.Mud volcanism,as a dynamic manifestation of these processes,contributes CH_(4)emissions that influence the global methane budget and impact marine ecosystems.Although∼2000 CH_(4)-rich mud extrusions have been documented in subduction zones globally,the geological origins and subduction-related geochemical and tectonic mechanisms driving these emissions remain poorly understood.This research examines the Makran subduction zone which hosts one of the world’s largest accretionary wedge and extensive CH_(4)-rich mud extrusions,as a model system.Integrated geochemical,geophysical,and geological observations reveal that thermogenic CH_(4)and clay-rich fluidized muds originate from deeply buried Himalayan turbidites(underthrusted sediments),driven by organic-rich sediment maturation and high fluid overpressure.Key tectonic features,including thrust faults,overburden pressure of wedge-top sediments,normal faults,brittle fractures,and seismicity,facilitate CH_(4)-rich mud extrusions into the hydrosphere and atmosphere.The extruded gases are predominantly CH_(4),with minor C_(2)H_(6),C_(3)H_(8),i-C_(4)H_(10),and n-C_(4)H_(10)while the mud breccia exhibits a chemical composition dominated by SiO_(2),Al_(2)O_(3),and Fe_(2)O_(3),enriched with trace elements(Rb,Zr,and V)and clay minerals,quartz,and carbonates.Geochemical indicators suggest intense chemical weathering and mature sediments classifying the mud breccia as litharenite and sub-litharenite,indicative of deep burial and compaction.These findings model the evolution of CH_(4)-rich mud extrusions through three geological stages:(i)Eocene to Early Miocene pre-thermogenic formation of the CH_(4)-rich source,(ii)Middle Miocene to Pliocene syn-thermogenic CH_(4)and fluidized mud generation,and(iii)Pleistocene to Recent post-thermogenic CH_(4)-rich fluidized mud migration.These findings underscore the critical yet often overlooked role of subduction-related geochemical and tectonic processes in CH_(4)generation and emission,with significant implications for the global CH_(4)budget and marine ecosystems.展开更多
Mineral resources prediction and assessment is one of the most important tasks in geosciences.Geochemical anomalies,as direct indicators of the presence of mineralization,have played a significant role in the search o...Mineral resources prediction and assessment is one of the most important tasks in geosciences.Geochemical anomalies,as direct indicators of the presence of mineralization,have played a significant role in the search of mineral deposits in the past several decades.In the near future,it may be possible to recognize subtle geochemical anomalies through the use of processing of geochemical exploration data using advanced approaches such as the spectrum-area multifractal model.In addition,negative geochemical anomalies can be used to locate mineralization.However,compared to positive geochemical anomalies,there has been limited research on negative geochemical anomalies in geochemical prospecting.In this study,two case studies are presented to demonstrate the identification of subtle geochemical anomalies and the significance of negative geochemical anomalies.Meanwhile,the opportunities and challenges in evaluating subtle geochemical anomalies associated with mineralization,and benefits of mapping of negative anomalies are discussed.展开更多
Regional geochemical division is a mapping technique to divide an area into slices where the associations between geochemical elements are relatively simple and uniform. The result of division is expressed on a 2 D ma...Regional geochemical division is a mapping technique to divide an area into slices where the associations between geochemical elements are relatively simple and uniform. The result of division is expressed on a 2 D map. The scheme of regional geochemical division includes non supervised pattern recognition, elementary statistics and factor analysis. A practical example in a gold prospecting area in Jilin, China, and the corresponding explanation are presented. Regional geochemical division is a basic approach to the delineation of the geochemical blocks as well.展开更多
The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines fro...The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines from the deposits. The results indicate a systematic change of mineral geochemical compositions, which might be used as a mineral geochemical tracer for post-magmatic hydrothermal fluid, basin fluid and their mixture. The tourmalines from granite are schori with Fe/ (Fe+Mg) ratios of 0.912-1.00 and Na/(Na+Ca) ratios of 0.892-0.981. Tourmalines as an inclusion in quartz from the ore bodies are dravite with Fe/(Fe+Mg) ratios of 0.212-0.519 and Na/(Na+Ca) ratios of 0.786--0.997. Tourmalines from the country rocks are dravite with Fe/(Fe+Mg) ratios of 0.313--0.337 and Na/(Na+Ca) ratio of 0.599-0.723. Tourmalines from cassiterite-tourmaline veins that occur in crannies within the country rocks show distinct optical zoning with alternate occurrence of dravite and schorl, Fe/(Fe+Mg)=0.374-0.843, Na/(Na+Ca)=0.538-0.987. It suggests that schorl in granite and dravite in carbonatite are related to magmatic fluid and basin fluid respectively. When magmatic fluid rose up and entered into crannies of the country rocks, consisting mainly of carbonatite, basin fluid would be constantly added to the magmatic fluid. The two types of fluid were mixed in structural crannies of the sedimentary basin accompanied with periodic geochemical oscillations to form material records in chemical composition zonings of tourmalines.展开更多
Groundwater quality monitoring and geochemical characterization in the phreatic aquifer are critical for ensuring universal and equitable access to clean,reliable,and inexpensive drinking water for all.This research w...Groundwater quality monitoring and geochemical characterization in the phreatic aquifer are critical for ensuring universal and equitable access to clean,reliable,and inexpensive drinking water for all.This research was intended to investigate the hydrogeochemical attributes and mechanisms regulating the chemistry of groundwater as well as to assess spatial variation in groundwater quality in Satna district,India.To accomplish this,the groundwater data comprising 13 physio-chemical parameters from thirty-eight phreatic aquifer locations were analysed for May 2020 by combining entropy-weighted water quality index(EWQI),multivariate statistics,geochemical modelling,and geographical information system.The findings revealed that the groundwater is fresh and slightly alkaline.Hardness was a significant concern as 57.89% of samples were beyond the permissible limit of the World Health Organisation.The dominance of ions were in the order of Ca^(2+)> Na^(+)> Mg^(2+)> K^(+) and HCO_(3)^(-)> SO_(4)^(2-)> Cl^-> NO_(3)^(-)> F^(-).Higher concentration of these ions is mainly concentrated in the northeast and eastern regions.Pearson correlation analysis and principal component analysis(PCA) demonstrated that both natural and human factors regulate groundwater chemistry in the region.The analysis of Q-mode agglomerative hierarchical clustering highlighted three significant water clusters.Ca-HCO_3 was the most prevalent hydro-chemical facies in all three clusters.Geochemical modelling through various conventional plots indicated that groundwater chemistry in the research region is influenced by the dissolution of calcite/dolomite,reverse ion exchange,and by silicate and halite weathering.EWQI data of the study area disclosed that 73.69% of the samples were appropriate for drinking.Due to high salinity,Magnesium(Mg^(2+)),Nitrate(NO_(3)^(-)),and Bicarbonate(HCO_(3)^(-)) concentrations,the north-central and north-eastern regions are particularly susceptible.The findings of the study may be accomplished by policymakers and groundwater managers to achieve sustainable groundwater development at the regional scale.展开更多
Sheytoor Iron Ore deposit is located in Yazd province of Iran (Bafq). The most abundant ore is magnetite, which can be seen in the form of mass and granular tissue in various forms of self-shaped, semi-self-shaped and...Sheytoor Iron Ore deposit is located in Yazd province of Iran (Bafq). The most abundant ore is magnetite, which can be seen in the form of mass and granular tissue in various forms of self-shaped, semi-self-shaped and amorphous. The main purpose of this study is to identify the geochemical relationship of phosphorus and sulfur elements and also three-dimensional modeling of mineralization of these elements in iron ore. In order to achieve the research goal, methods such as k-mean clustering technique, concentration-volume fractal as well as block modeling with kriging estimator and Inverse Distance Weighting (IDW) interpolator were used. The model of geochemical behavior of phosphorus and sulfur elements compared to iron is of great importance because these two elements are known as deleterious elements in mineral processing and steelmaking processes, which are the post-mining stages. Existence of geochemical model and identification of elements’ behavior towards each other play a key role in optimizing mining operations in order to achieve geometallurgical goals. The results of this study are the three-dimensional model of mineralization of iron, phosphorus and sulfur elements, separation of phosphorus and sulfur mineralization communities and also presenting the model of enrichment community of these two elements. All the results are in line with geometallurgical studies and can optimize the next steps by optimizing the mining process.展开更多
[Objective] This study was conducted to investigate the eco-geochemical characteristics of corn production area in Inner Mongolia Hetao agricultural economic zone. [Method] Corn root soils and corn samples from variou...[Objective] This study was conducted to investigate the eco-geochemical characteristics of corn production area in Inner Mongolia Hetao agricultural economic zone. [Method] Corn root soils and corn samples from various parts were collected from the Inner Mongolia Hetao agricultural economic zone. Trace element contents in root soils and different parts of corn were analyzed. [Result] Most element contents in cumulated irrigated soil were relatively higher. Most elements were relatively enriched in the stems and leaves of corn. F, Mn and Co were relatively enriched in roots of corn; and N was strongly enriched in grains, and Zn and F were relatively enriched in grains. [Conclusion] It is necessary to rationally apply fertilizer in corn production area in Hetao and control the application of harmful elements in fertilizer in future.展开更多
If you are a gold digger you want to find more gold.Therefore,you collect and analyse a maximum amount of,in particular,geological data and information as that would give you the best clues for finding new occurrences...If you are a gold digger you want to find more gold.Therefore,you collect and analyse a maximum amount of,in particular,geological data and information as that would give you the best clues for finding new occurrences.Geological maps are the main communication tools for geologists.Such maps may be quite complex for non-geologists but even for fellow geoscientists as these often cramp a multitude of subsurface information into a 2D frame.Geochemical information ranks high on the list of most wanted information for exploration geologists.Such information normally comes from geochemical analyses of rock or soil samples.For regional inventories often geochemical data sets from stream sedimentsare used.Nation-or even continent-wide geochemical data sets have now become available for many regions on this planet.展开更多
As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coeffic...As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coefficients are computed from the values of two elements,which reflect only the correlation at a global level.Thus,the spatial details of the correlation structure are ignored.In fact,an element combination anomaly often exists in geological backgrounds,such as on a fault zone or within a lithological unit.This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted.To address this problem,we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements.In this method,the sampling area is first divided into a set of uniform grid cells.A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit.The local correlation in each unit is expressed by the Pearson correlation coefficient.The whole area is scanned by the moving window,which produces a correlation coefficient matrix,and the result is portrayed with a thermal diagram.The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain,Henan Province.The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots.Therefore,the local correlation method is effective in extracting geochemical element combination anomalies.展开更多
To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Sh...To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province).LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex:2516±26 Ma;Metamafic rocks:2494±31 Ma),Jiangxian Group(~2213 Ma),Zhongtiao Group(2077±29 Ma),Jiehekou Group(1998±23 Ma),and Lüliang Group(2152±52 Ma).Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex)have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups.The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lüliangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan.This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.展开更多
Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential mi...Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential micronutrients for plants and human body with crucial biological functions,in particular,Se is significant for human health and considered as“the king of anti-cancer”.As these elements required by human or plants are mainly absorbed from soil directly or indirectly,therefore,it is important to understand the contents and distributions of them in the soil of cultivated land for guiding agricultural production.In this work,low-density geochemical survey at the scale of 1∶1000000 was carried out in Tanzania,and the results show that the concentrations of B,Zn and Se in stream sediments are low and their distributions are heterogeneous.According to the distributions of geological units,the existing cultivated land resources can be divided into five regions in Tanzania.Compared with the national background values,the concentrations of B,Zn and Se are insufficient overall but enriched locally in these regions.In general,element concentrations in stream sediments and soil have a positive correlation because of their similar sources,which is essential in agriculture application.Based on the information provided by low-density geochemical data and maps,the Se-sufficient and Se-rich regions were delineated in Tanzania,where can be used to develop Se-rich industries.Finally,this paper believes that geochemical survey is a powerful tool for cultivated land evaluation,agriculture management and land development.展开更多
In this paper we have synthesized the published and unpublished geochemical data on the Palaeoproterozoic mafic magmatism in the Indian Shield.Palaeoproterozoic mafic magmatism is widespread in the Indian Shield;it mo...In this paper we have synthesized the published and unpublished geochemical data on the Palaeoproterozoic mafic magmatism in the Indian Shield.Palaeoproterozoic mafic magmatism is widespread in the Indian Shield;it mostly emplaced as dyke intrusions within the cratons and south Indian granulite region and as intrusives/traps in the intra-cratonic basins and the Eastern Ghat Mobile Belt.展开更多
文摘Located in Southeastern Chad. The Iro lake offers a great opportunity for the study of Precambrian formations and their Phanerozoic cover. Pluton is a Cal-alkaline granite. Due to its geographical location and geological features, it holds crucial information for understanding the evolution of the Saharan Meta craton (central Africa), which remains poorly studied. One of the objectives is to map the formations Precambrian age in Southeastern Chad. Based on the petrographic and geochemical results, we identified granitoids of pan-African age (biotite granite, aplite granite and pegmatite granite). This Precambrian basement is covered with sedimentary formations (clays, argillites, lateritic cuirasses, etc.). The mineral assemblage is characteristic of acid rocks. Geochemistry reveals rocks with a high SiO2 range (62% - 77%) giving sub-alkaline to calc-alkaline acid rocks with high k (4.62% to 6.39%). The granitoids are classified as S-type hyperaluminous granites. This classification is supported by the presence of peraluminous minerals (e.g., muscovite) within the Iro granitoids, which also have high (>1%). Geochemical variation within the granites is largely due to extensive crystal fractionation. The Pattern of REEs normalized to the primitive mantle shows a pronounced negative Eu anomaly, reflecting the crystallization process and fractional crystallization of plagioclase in the rock, and a positive Yb anomaly. The role of plagioclase fractionation was relatively major during the earlier intrusive stages (consistent with the presence of Eu anomalies) and slightly increased, together with biotite and K-feldspar fractionation, during the later (granitic) rock crystallization. The Pattern of the spider normalized to MORBs shows two pronounced negative anomalies in TiO2 and Cs and a slight negative anomaly in Ba. The loss of Ba, Ti and Cs may be caused by the plagioclase fractionation, apatite and ilmenite crystal. The Ba anomaly is also controlled by the presence of K-feldspar and mica. The observed Ti anomalies are due to the fractionation of magnetite indicating a subduction environment (or remelting of a source from a subduction environment).
基金supported by Croatian Science Foundation Research Project Dinaridic Foreland Basin between Two Eocene Thermal Optima:A Possible Scenario for the Northern Adriatic BREEMECO(No.2019-04-5775)。
文摘Hemipelagic to pelagic(H/P)marls,representing pelitic deposits,accumulated within the foredeep sub-basin of the Dinaric Foreland Basin(northern Neotethyan margin,present-day Croatia)during the Middle to Late Eocene.Syn-sedimentary tectonic movements,paleogeographic position and exchanges of short-lived hyperthermal episodes affected the sedimentation and related mineral and geochemical record of these deposits.Mineral(clay)assemblages bear signature of prevailing physical weathering with significant illite and chlorite content,but climatic seasonality is suggested by smectite-interlayered phases and sporadical increase of kaolinite content.Illite crystallinity varies significantly,and the lowest crystallinity is recorded by the Lutetian samples.Illite chemistry index is always bellow 0.5,being characteristic for Fe-Mg-rich illite.The geochemical records are the most prominent(CIA up to 76,CIW up to 91)for the Istrian Lutetian(42.3-40.5 Ma),but also for Priabonian(35.8-34.3 Ma)samples of Hvar Island.The ICV values(the lowest 1.40 and the highest 10.85)of all studied samples fall above PAAS(ICV=0.85)and point to their chemical immaturity.The Ga/Rb ratios are lower than 0.2 and K_(2)O/Al_(2)O_(3) ratios are also low(0.16-0.22),implying transition between cold and dry,and warm and humid climate,obviously trending among several warming episodes.
基金supported by the National Natural Science Foundation of China(Nos.42530801,42425208)the Natural Science Foundation of Hubei Province(China)(No.2023AFA001)+1 种基金the MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.MSFGPMR2025-401)the China Scholarship Council(No.202306410181)。
文摘Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.
基金the support from the National Natural Science Foundation of China(Nos.52279103,52379103)the Natural Science Foundation of Shandong Province(No.ZR2023YQ049)。
文摘Geological analysis,despite being a long-term method for identifying adverse geology in tunnels,has significant limitations due to its reliance on empirical analysis.The quantitative aspects of geochemical anomalies associated with adverse geology provide a novel strategy for addressing these limitations.However,statistical methods for identifying geochemical anomalies are insufficient for tunnel engineering.In contrast,data mining techniques such as machine learning have demonstrated greater efficacy when applied to geological data.Herein,a method for identifying adverse geology using machine learning of geochemical anomalies is proposed.The method was identified geochemical anomalies in tunnel that were not identified by statistical methods.We by employing robust factor analysis and self-organizing maps to reduce the dimensionality of geochemical data and extract the anomaly elements combination(AEC).Using the AEC sample data,we trained an isolation forest model to identify the multi-element anomalies,successfully.We analyzed the adverse geological features based the multi-element anomalies.This study,therefore,extends the traditional approach of geological analysis in tunnels and demonstrates that machine learning is an effective tool for intelligent geological analysis.Correspondingly,the research offers new insights regarding the adverse geology and the prevention of hazards during the construction of tunnels and underground engineering projects.
基金supported by the research grant from Institute of Crustal Dynamics,China Earthquake Administration(No.ZDJ2019-02)。
文摘Geochemistry of the fault gouge record information on fault behaviors and environmental conditions.We investigated variations in the mineralogical and geochemical compositions of the fault gouge sampled from the margin zone(MZ)to the slip central zone(CZ)of the fault gouge in the Beichuan-Yingxiu surface rupture zone of the Wenchuan Earthquake.Results show that the clay minerals contents increase from the MZ to CZ,and the quartz and plagioclase contents slight decrease.An increasing enrichment in Al_(2)O_(3),Fe_(2)O_(3),and K_(2)O are observed toward the CZ;the decomposition of quartz and plagioclase,as well as the depletion of Si O_(2),Ca O,Na_2O,and P_(2)O_(5)suggest that the alkaline-earth elements are carried away by the fluids.It can be explained that the stronger coseismic actions in the CZ allow more clay minerals to form,decompose quartz and plagioclase,and alter plagioclase to chlorite.The mass loss in the CZ is larger than that in MZ,which is maybe due to the more concentrated stress in the strongly deformed CZ,however other causes will not be excluded.
基金supported by the National Natural Science Foundation of China(41925014).
文摘The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.
基金Supported by the National Natural Science Foundation of China(No.U2244222).
文摘This study selects geochemical data of basalts from different seamounts in the Mid-Pacific Mountains province and conducts analyses of major and trace elements as well as Sr-Nd-Pb isotopes to explore the tectonic evolution,petrogenesis,and mantle-source magama characteristics of the Mid-Pacific Mountains.The basalts from the Mid-Pacific Mountains are predominantly alkali basalts,rich in alkalies,and changing in potassium.They exhibit geochemical features of ocean island basalts(OIB),with distinct fractionation between light and heavy rare-earth elements and a pronounced Ce negative anomaly(δ_(Ce)=0.16–1.10,average 0.84),along with enrichment in large ion lithophile elements(LILEs).The Mid-Pacific Mountains are intraplate ocean island basalts formed by mantle plume(hotspot)activity,originating mainly from an enriched mantle magma source region,and most of them have undergone low degree of partial melting and a certain degree of crystalline differentiation,with negligible contamination from oceanic crust materials.The Mid-Pacific Mountains exhibit ratios of^(87)Sr/^(86)Sr(i)(0.702733–0.704313,average 0.703452)and^(143)Nd/^(144)Nd(i)(0.512698–0.512996,average 0.512846)which are close to the HIMU mantle endmember,and ratios of 206Pb/204Pb(18.953–19.803),^(207)Pb/^(204)Pb(15.54–15.62)and^(208)Pb/^(204)Pb(38.813–39.514)which are close to the EMII mantle end-member.Combined with the isotopic geochemical characteristics in the West Pacific Seamounts province,the basalts from the Mid-Pacific Mountains were considered to represent a certain proportion of mixing mantle end-members between the HIMU and EMII,possibly formed by the mixing of the HIMU superplume in the South Pacific hotspot region with the EMII secondary mantle plume in the transition zone during their ascent.
基金supported by The National Science and Technology Major Project under contract(No.2011ZX05025-002-03)The Project of China National Offshore Oil Corporation(CNOOC)Limited under contract(No.CCL2013ZJFNO729)The National Natural Science Foundation of China under contract(No.41530963)。
文摘In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain the contents of rare earth elements(REE)to explore the degree of preservation of paleo-seawater information by carbonate components and elucidate the provenance relationship between the QDNB and the Yinggehai Basin and the provenance changes in the deep-water area of the QDNB since the Oligocene.The main achievements of this paper are as follows:(1)In the process of extracting the autogenic carbonate,the iron-manganese oxide envelope on the surface of the sediment particles(which can adsorb REE or its complexes in seawater)will partially dissolve into the autogenic carbonate components,thus covering the REE geochem-ical information of paleo-seawater carried by the auto-genic carbonate.Therefore,caution should be exercised when using the geochemical characteristics of REE in the carbonate component of impure carbonate rocks to reflect the sedimentary paleoenvironment.(2)The analysis of the REE geochemical characteristics of multiple cores in the Ying-gehai-QDNB shows that there is a close provenance rela-tionship between the two Basins.The sediments in the central depression area of the Yinggehai Basin and the deep-water area in the western part of the QDNB generally contain more feldspar(Eu-rich)minerals.Since the Eocene,paleo-rivers have carried ultramafic-mafic materials originating from the western South China Sea into the sea.Affected by the transport distance and sea level changes,the content of feldspar(Eu-rich)minerals in the sediments of the QDNB from west to east gradually decreased.
基金funded by the National Natural Science Foundation of China(Grants No.92058213 and No.U22A20581)the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province(Grant No.YSPTZX202204)key R&D projects of Hainan Province(ZDYF2024GXJS022).
文摘Subduction zones are critical interfaces for lithospheric volatile fluxes,where complex tectonic and geochemical interactions facilitate the release of gases and fluids from deep-seated reservoirs within the Earth’s crust.Mud volcanism,as a dynamic manifestation of these processes,contributes CH_(4)emissions that influence the global methane budget and impact marine ecosystems.Although∼2000 CH_(4)-rich mud extrusions have been documented in subduction zones globally,the geological origins and subduction-related geochemical and tectonic mechanisms driving these emissions remain poorly understood.This research examines the Makran subduction zone which hosts one of the world’s largest accretionary wedge and extensive CH_(4)-rich mud extrusions,as a model system.Integrated geochemical,geophysical,and geological observations reveal that thermogenic CH_(4)and clay-rich fluidized muds originate from deeply buried Himalayan turbidites(underthrusted sediments),driven by organic-rich sediment maturation and high fluid overpressure.Key tectonic features,including thrust faults,overburden pressure of wedge-top sediments,normal faults,brittle fractures,and seismicity,facilitate CH_(4)-rich mud extrusions into the hydrosphere and atmosphere.The extruded gases are predominantly CH_(4),with minor C_(2)H_(6),C_(3)H_(8),i-C_(4)H_(10),and n-C_(4)H_(10)while the mud breccia exhibits a chemical composition dominated by SiO_(2),Al_(2)O_(3),and Fe_(2)O_(3),enriched with trace elements(Rb,Zr,and V)and clay minerals,quartz,and carbonates.Geochemical indicators suggest intense chemical weathering and mature sediments classifying the mud breccia as litharenite and sub-litharenite,indicative of deep burial and compaction.These findings model the evolution of CH_(4)-rich mud extrusions through three geological stages:(i)Eocene to Early Miocene pre-thermogenic formation of the CH_(4)-rich source,(ii)Middle Miocene to Pliocene syn-thermogenic CH_(4)and fluidized mud generation,and(iii)Pleistocene to Recent post-thermogenic CH_(4)-rich fluidized mud migration.These findings underscore the critical yet often overlooked role of subduction-related geochemical and tectonic processes in CH_(4)generation and emission,with significant implications for the global CH_(4)budget and marine ecosystems.
基金supported by the National Natural Science Foundation of China(No.41772344)。
文摘Mineral resources prediction and assessment is one of the most important tasks in geosciences.Geochemical anomalies,as direct indicators of the presence of mineralization,have played a significant role in the search of mineral deposits in the past several decades.In the near future,it may be possible to recognize subtle geochemical anomalies through the use of processing of geochemical exploration data using advanced approaches such as the spectrum-area multifractal model.In addition,negative geochemical anomalies can be used to locate mineralization.However,compared to positive geochemical anomalies,there has been limited research on negative geochemical anomalies in geochemical prospecting.In this study,two case studies are presented to demonstrate the identification of subtle geochemical anomalies and the significance of negative geochemical anomalies.Meanwhile,the opportunities and challenges in evaluating subtle geochemical anomalies associated with mineralization,and benefits of mapping of negative anomalies are discussed.
文摘Regional geochemical division is a mapping technique to divide an area into slices where the associations between geochemical elements are relatively simple and uniform. The result of division is expressed on a 2 D map. The scheme of regional geochemical division includes non supervised pattern recognition, elementary statistics and factor analysis. A practical example in a gold prospecting area in Jilin, China, and the corresponding explanation are presented. Regional geochemical division is a basic approach to the delineation of the geochemical blocks as well.
基金supported by "Technology of Comprehensive Prospecting and Exploitability for Elements in Crisis Mines" (Grant No. 2008EG115074)a special fund managed by the Ministry of Science and Technology for technical R&D of scientific research institutions, and the Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences
文摘The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines from the deposits. The results indicate a systematic change of mineral geochemical compositions, which might be used as a mineral geochemical tracer for post-magmatic hydrothermal fluid, basin fluid and their mixture. The tourmalines from granite are schori with Fe/ (Fe+Mg) ratios of 0.912-1.00 and Na/(Na+Ca) ratios of 0.892-0.981. Tourmalines as an inclusion in quartz from the ore bodies are dravite with Fe/(Fe+Mg) ratios of 0.212-0.519 and Na/(Na+Ca) ratios of 0.786--0.997. Tourmalines from the country rocks are dravite with Fe/(Fe+Mg) ratios of 0.313--0.337 and Na/(Na+Ca) ratio of 0.599-0.723. Tourmalines from cassiterite-tourmaline veins that occur in crannies within the country rocks show distinct optical zoning with alternate occurrence of dravite and schorl, Fe/(Fe+Mg)=0.374-0.843, Na/(Na+Ca)=0.538-0.987. It suggests that schorl in granite and dravite in carbonatite are related to magmatic fluid and basin fluid respectively. When magmatic fluid rose up and entered into crannies of the country rocks, consisting mainly of carbonatite, basin fluid would be constantly added to the magmatic fluid. The two types of fluid were mixed in structural crannies of the sedimentary basin accompanied with periodic geochemical oscillations to form material records in chemical composition zonings of tourmalines.
文摘Groundwater quality monitoring and geochemical characterization in the phreatic aquifer are critical for ensuring universal and equitable access to clean,reliable,and inexpensive drinking water for all.This research was intended to investigate the hydrogeochemical attributes and mechanisms regulating the chemistry of groundwater as well as to assess spatial variation in groundwater quality in Satna district,India.To accomplish this,the groundwater data comprising 13 physio-chemical parameters from thirty-eight phreatic aquifer locations were analysed for May 2020 by combining entropy-weighted water quality index(EWQI),multivariate statistics,geochemical modelling,and geographical information system.The findings revealed that the groundwater is fresh and slightly alkaline.Hardness was a significant concern as 57.89% of samples were beyond the permissible limit of the World Health Organisation.The dominance of ions were in the order of Ca^(2+)> Na^(+)> Mg^(2+)> K^(+) and HCO_(3)^(-)> SO_(4)^(2-)> Cl^-> NO_(3)^(-)> F^(-).Higher concentration of these ions is mainly concentrated in the northeast and eastern regions.Pearson correlation analysis and principal component analysis(PCA) demonstrated that both natural and human factors regulate groundwater chemistry in the region.The analysis of Q-mode agglomerative hierarchical clustering highlighted three significant water clusters.Ca-HCO_3 was the most prevalent hydro-chemical facies in all three clusters.Geochemical modelling through various conventional plots indicated that groundwater chemistry in the research region is influenced by the dissolution of calcite/dolomite,reverse ion exchange,and by silicate and halite weathering.EWQI data of the study area disclosed that 73.69% of the samples were appropriate for drinking.Due to high salinity,Magnesium(Mg^(2+)),Nitrate(NO_(3)^(-)),and Bicarbonate(HCO_(3)^(-)) concentrations,the north-central and north-eastern regions are particularly susceptible.The findings of the study may be accomplished by policymakers and groundwater managers to achieve sustainable groundwater development at the regional scale.
文摘Sheytoor Iron Ore deposit is located in Yazd province of Iran (Bafq). The most abundant ore is magnetite, which can be seen in the form of mass and granular tissue in various forms of self-shaped, semi-self-shaped and amorphous. The main purpose of this study is to identify the geochemical relationship of phosphorus and sulfur elements and also three-dimensional modeling of mineralization of these elements in iron ore. In order to achieve the research goal, methods such as k-mean clustering technique, concentration-volume fractal as well as block modeling with kriging estimator and Inverse Distance Weighting (IDW) interpolator were used. The model of geochemical behavior of phosphorus and sulfur elements compared to iron is of great importance because these two elements are known as deleterious elements in mineral processing and steelmaking processes, which are the post-mining stages. Existence of geochemical model and identification of elements’ behavior towards each other play a key role in optimizing mining operations in order to achieve geometallurgical goals. The results of this study are the three-dimensional model of mineralization of iron, phosphorus and sulfur elements, separation of phosphorus and sulfur mineralization communities and also presenting the model of enrichment community of these two elements. All the results are in line with geometallurgical studies and can optimize the next steps by optimizing the mining process.
基金Supported by Project of Big Survey of Land and Resource from China Geological Survey~~
文摘[Objective] This study was conducted to investigate the eco-geochemical characteristics of corn production area in Inner Mongolia Hetao agricultural economic zone. [Method] Corn root soils and corn samples from various parts were collected from the Inner Mongolia Hetao agricultural economic zone. Trace element contents in root soils and different parts of corn were analyzed. [Result] Most element contents in cumulated irrigated soil were relatively higher. Most elements were relatively enriched in the stems and leaves of corn. F, Mn and Co were relatively enriched in roots of corn; and N was strongly enriched in grains, and Zn and F were relatively enriched in grains. [Conclusion] It is necessary to rationally apply fertilizer in corn production area in Hetao and control the application of harmful elements in fertilizer in future.
文摘If you are a gold digger you want to find more gold.Therefore,you collect and analyse a maximum amount of,in particular,geological data and information as that would give you the best clues for finding new occurrences.Geological maps are the main communication tools for geologists.Such maps may be quite complex for non-geologists but even for fellow geoscientists as these often cramp a multitude of subsurface information into a 2D frame.Geochemical information ranks high on the list of most wanted information for exploration geologists.Such information normally comes from geochemical analyses of rock or soil samples.For regional inventories often geochemical data sets from stream sedimentsare used.Nation-or even continent-wide geochemical data sets have now become available for many regions on this planet.
基金supported by the National Natural Science Foundation of China(Nos.41272359,210100069)。
文摘As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coefficients are computed from the values of two elements,which reflect only the correlation at a global level.Thus,the spatial details of the correlation structure are ignored.In fact,an element combination anomaly often exists in geological backgrounds,such as on a fault zone or within a lithological unit.This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted.To address this problem,we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements.In this method,the sampling area is first divided into a set of uniform grid cells.A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit.The local correlation in each unit is expressed by the Pearson correlation coefficient.The whole area is scanned by the moving window,which produces a correlation coefficient matrix,and the result is portrayed with a thermal diagram.The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain,Henan Province.The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots.Therefore,the local correlation method is effective in extracting geochemical element combination anomalies.
基金supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No.XDB18010105)the Talent start-up fund of Guiyang University(2019039510821)。
文摘To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province).LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex:2516±26 Ma;Metamafic rocks:2494±31 Ma),Jiangxian Group(~2213 Ma),Zhongtiao Group(2077±29 Ma),Jiehekou Group(1998±23 Ma),and Lüliang Group(2152±52 Ma).Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex)have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups.The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lüliangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan.This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.
基金the cooperation projects between China Geological Survey and geological survey institutions of Africa(DD20190439,DD20160108,DD20221801)。
文摘Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential micronutrients for plants and human body with crucial biological functions,in particular,Se is significant for human health and considered as“the king of anti-cancer”.As these elements required by human or plants are mainly absorbed from soil directly or indirectly,therefore,it is important to understand the contents and distributions of them in the soil of cultivated land for guiding agricultural production.In this work,low-density geochemical survey at the scale of 1∶1000000 was carried out in Tanzania,and the results show that the concentrations of B,Zn and Se in stream sediments are low and their distributions are heterogeneous.According to the distributions of geological units,the existing cultivated land resources can be divided into five regions in Tanzania.Compared with the national background values,the concentrations of B,Zn and Se are insufficient overall but enriched locally in these regions.In general,element concentrations in stream sediments and soil have a positive correlation because of their similar sources,which is essential in agriculture application.Based on the information provided by low-density geochemical data and maps,the Se-sufficient and Se-rich regions were delineated in Tanzania,where can be used to develop Se-rich industries.Finally,this paper believes that geochemical survey is a powerful tool for cultivated land evaluation,agriculture management and land development.
基金supported by the grants from the Department of Science and Technology,Government of India to TR(SR/S4/ES-598/2011)and KVK(EMR/2014/000779)forms a part of CSIRES scheme to TR(21(1041)/17/EMR-Ⅱ)UGC-SAP scheme at the SRTM University(No.F.550/3/DRS-Ⅱ/2016/SAP-Ⅰ).
文摘In this paper we have synthesized the published and unpublished geochemical data on the Palaeoproterozoic mafic magmatism in the Indian Shield.Palaeoproterozoic mafic magmatism is widespread in the Indian Shield;it mostly emplaced as dyke intrusions within the cratons and south Indian granulite region and as intrusives/traps in the intra-cratonic basins and the Eastern Ghat Mobile Belt.