Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries,supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli.Ge...Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries,supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli.Genetic variants that regulate gene expression,known as expression quantitative trait loci(eQTL),are primarily shaped by human migration history and evolutionary forces,likewise,regulation of gene expression in principle could have been influenced by these events.Therefore,a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped.Recent studies,however,suggest that eQTL is enriched in genes that are selectively constrained.Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations.In addition,such studies are primarily dominated by the major populations of European ancestry,leaving many marginalized populations underrepresented.These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity,which potentially hinders precision medicine.This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective,subsequently discuss their influence on phenomics,as well as challenges and opportunities in the applications to precision medicine.展开更多
Avian metapneumovirus(aMPV),a paramyxovirus,causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.This study established a reverse genetics system for aMPV subtype B LN16-A strain based on...Avian metapneumovirus(aMPV),a paramyxovirus,causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.This study established a reverse genetics system for aMPV subtype B LN16-A strain based on T7 RNA polymerase.Full-length cDNA of the LN16-A strain was constructed by assembling 5 cDNA fragments between the T7 promoter and hepatitis delta virus ribozyme.Transfection of this plasmid,along with the supporting plasmids encoding the N,P,M2-1,and L proteins of LN16-A into BSR-T7/5 cells,resulted in the recovery of aMPV subtype B.To identify an effective insertion site,the enhanced green fluorescent protein(EGFP)gene was inserted into different sites of the LN16-A genome to generate recombinant LN16-As.The results showed that the expression levels of EGFP at the site between the G and L genes of LN16-A were significantly higher than those at the other two sites(between the leader and N genes or replacing the SH gene).To verify the availability of the site between G and L for foreign gene expression,the VP2 gene of very virulent infectious bursal disease virus(vvIBDV)was inserted into this site,and recombinant LN16-A(rLN16A-vvVP2)was successfully rescued.Single immunization of specificpathogen-free chickens with rLN16A-vvVP2 induced high levels of neutralizing antibodies and provided 100%protection against the virulent aMPV subtype B and vvIBDV.Establishing a reverse genetics system here provides an important foundation for understanding aMPV pathogenesis and developing novel vector vaccines.展开更多
Chronic kidney disease(CKD)affects a significant fraction of the global population and is closely associated with elevated cardiovascular risk and poor clinical outcomes.Its pathophysiology entails complex molecular a...Chronic kidney disease(CKD)affects a significant fraction of the global population and is closely associated with elevated cardiovascular risk and poor clinical outcomes.Its pathophysiology entails complex molecular and cellular disturbances,including reduced nitric oxide bioavailability,persistent low-grade inflammation,oxidative stress,endothelial dysfunction,altered mineral metabolism,genetic predispositions,and uremic toxin accumulation.As current pharmacological treatments provide only partial risk reduction,complementary approaches are imperative.Exercise training,both aerobic and resistance,has emerged as a potent non-pharmacological intervention targeting these underlying molecular pathways.Regular exercise can enhance nitric oxide signaling,improve antioxidant defenses,attenuate inflammation,facilitate endothelial repair via endothelial progenitor cells,and stabilize muscle metabolism.Additionally,accumulating evidence points to a genetic dimension in CKD susceptibility and progression.Variants in genes such as APOL1,PKD1,PKD2,UMOD,and COL4A3–5 shape disease onset and severity,and may modulate response to interventions.Exercise may help buffer these genetic risks by inducing epigenetic changes,improving mitochondrial function,and optimizing crosstalk between muscle,adipose tissue,and the vasculature.This review synthesizes how exercise training can ameliorate key molecular mediators in CKD,emphasizing the interplay with genetic and epigenetic factors.We integrate evidence from clinical and experimental studies,discussing how personalized exercise prescriptions,informed by patients’genetic backgrounds and nutritional strategies(such as adequate protein intake),could enhance outcomes.Although large-scale trials linking molecular adaptations to long-term endpoints are needed,current knowledge strongly supports incorporating exercise as a cornerstone in CKD management to counteract pervasive molecular derangements and leverage genetic insights for individualized care.展开更多
2025年3月17日,国际顶级学术期刊《自然·遗传学》(Nature Genetics)刊发题为“Genomic analysis of 1325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement”的研究性论文。该研究...2025年3月17日,国际顶级学术期刊《自然·遗传学》(Nature Genetics)刊发题为“Genomic analysis of 1325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement”的研究性论文。该研究由福建省农业科学院茶叶研究所与中国农业科学院农业基因组研究所等多家单位合作完成。本研究通过对茶树及其近缘种的基因组进行深度重测序,构建了全面的茶树基因组遗传变异图谱,进而揭示了茶树的遗传多样性及其驯化状态。其结果为茶树的遗传进化和精准设计育种提供了有益见解以及重要参考资料。展开更多
Pediatric inflammatory bowel disease(IBD)is a chronic and heterogeneous disease.IBD is commonly classified into Crohn’s disease and ulcerative colitis.It is linked to serious symptoms and complications.The onset of I...Pediatric inflammatory bowel disease(IBD)is a chronic and heterogeneous disease.IBD is commonly classified into Crohn’s disease and ulcerative colitis.It is linked to serious symptoms and complications.The onset of IBD commonly occurs during adolescence.Despite the significant number of cases globally(~5 million),the causes of pediatric IBD,which constitutes 25%of IBD patients,are not yet fully understood.Apart from environmental factors,genetic factors contribute to a higher risk of developing IBD.The predisposition risk of IBD can be investigated using genetic testing.Genetic mechanisms of pediatric IBD are highly complex which resulted in difficulty in selecting effective treatment or patient management.Genetic variation of IBD would serve as a basis for precision medicine and allow for the discovery of more robust treatment avenues for this condition in pediatric patients.This review aims to discuss the genetics of pediatric IBD,and current development in the screening,diagnosis,and treatment based on genetic profiling of pediatric IBD subjects toward more personalized management of this disease.展开更多
Lynch syndrome(LS),also known as hereditary non-polyposis colorectal cancer(HNPCC),is an inherited condition associated with a higher risk of colorectal cancer(CRC)and other cancers.It is caused by germline mutations ...Lynch syndrome(LS),also known as hereditary non-polyposis colorectal cancer(HNPCC),is an inherited condition associated with a higher risk of colorectal cancer(CRC)and other cancers.It is caused by germline mutations in DNA mismatch repair(MMR)genes,including MLH1,MSH2,MSH6 and PMS2.These mutations lead to microsatellite instability(MSI)and defective DNA repair mechanisms,resulting in increased cancer risk.Early detection of LS is crucial for effective management and cancer prevention.Endoscopic surveillance,particularly regular colonoscopy,is recommended for individuals with LS to detect CRC at early stages.Additionally,universal screening of CRC for MMR deficiency can help identify at-risk individuals.Genetic counseling plays a valuable role in LS by guiding patients and their families in understanding the genetic basis,making informed decisions regarding surveillance and prevention,and offering reproductive options to reduce the transmission of pathogenic variants of the offspring.The aim of this review is to outline current strategies for the diagnosis,surveillance,and management of LS,with a focus on the role of genetic counseling,endoscopic screening,and emerging therapeutic approaches to mitigate cancer risk in affected individuals.展开更多
Information about whether genetic information requires special treatment in law varies around the world and many aspects are not clear.In this study,we draw upon knowledge gained from various disciplines,such as genet...Information about whether genetic information requires special treatment in law varies around the world and many aspects are not clear.In this study,we draw upon knowledge gained from various disciplines,such as genetics,medicine,law,philosophy,psychology,sociology,anthropology,insurance,and economics,which have all contributed to the study of genetic information,and discrimination based on genetic traits.With this in mind,we are able to set this research study into perspective.We make no claim on behalf of any field of study.Nevertheless,we say the development in the field of genetics is in its infancy and that knowledge of an individual genome would be essential not only for counseling but could also be used for stigmatization and discrimination.The purpose of the study is to help provide useful links concerning legal and ethical issues in human genetics and particularly where it deals with the laws,regulations,and policies concerning genetic information.We deal with the legal and ethical aspects in human genetics that influence genetic information.We examine government policies and the existing legislation in Papua New Guinea(PNG)that deal with genetic information and analyze discrimination cases due to genetic traits and describe its magnitude in PNG.This study places importance on the examination of qualitative data collected by a questionnaire survey from individual subjects representing various organizations in PNG including Department of Health,Insurance companies,General Federation of Employers’Associations,Trade Unions,and professional workers such as lawyers,District Court magistrates,medical doctors,healthcare workers,students,and private individuals.The study was conducted in towns in PNG although the majority of the participants live in the National Capital District.A sample of individuals(patients)were enrolled in a cross-sectional questionnaire survey.Individual information was obtained to describe the situation of the area.However,this study did not use administrative records based on health information from the Department of Health which describes the prevalence of genetically disordered individuals.All selected individuals or subjects were interviewed or completed a questionnaire.The data were assessed to characterize the study subsets.The findings of this study are made available to clinical practice in law,medical and public health,and private and public institutions including insurance companies,employers’federation,mining companies,and workers’unions in PNG,and academics and researchers.Educational programs on the basic principles of genetics,ethics,and law in relation to insurance will have to be developed to improve the knowledge of insurance,medical,and the cost of long-term care.展开更多
Chicken meat quality directly influences consumer acceptability and is crucial for the economic success of the poultry industry.Genetics and nutrition are key determinants of the meat quality traits in broilers.This r...Chicken meat quality directly influences consumer acceptability and is crucial for the economic success of the poultry industry.Genetics and nutrition are key determinants of the meat quality traits in broilers.This review summarizes the research advances in this field,with a focus on the genetic and nutritional foundations that regulate intramuscular fat(IMF)deposition and meat quality in chickens over the past decade.The effects of embryonic nutrition,both maternal nutrition and in ovo feeding(IOF),on skeletal muscle development,the IMF content,and meat quality traits in broilers are also discussed.In genetics,single-cell RNA sequencing revealed that de novo lipogenesis predominantly occurs in myocytes,which is key to the formation of IMF in chicken muscle tissue.Fatty acid synthase(FASN)is the key enzyme involved in this process.This discovery has reshaped the traditional understanding of intramuscular lipid metabolism in poultry.Key genes,proteins,and pathways,such as FASN,FABP4,PPARG,C/EBPα,SLC27A1;LPL,APOA1,COL1A1;PPAR and ECM–receptor interactions signaling,have been identified to regulate IMF content and distribution by modulating fatty acid metabolism and adipogenesis.LncHLFF was innovatively found to promote ectopic IMF deposition in chickens via exosome-mediated mechanisms without affecting abdominal fat deposition.MiR-27b-3p and miR-128-3p were found to inhibit adipogenic differentiation by targeting PPARG,thereby affecting IMF formation.In nutrition,nutrigenomics research has shown that fructose enhances IMF deposition by activating ChREBP,providing new targets for nutritional interventions.Adjusting dietary components,including energy,protein,amino acids,fatty acids,and phytochemicals(e.g.,rutin),has been shown to significantly improve meat quality in broilers.Maternal nutrition(e.g.,intake of energy,amino acids,vitamins,and trace elements)and IOF(e.g.,N-carbamylglutamate)have also been confirmed to significantly impact offspring meat quality,opening new avenues for improving embryonic nutrition.Based on these significant advancements,this review proposes strategies that integrate genetic and nutritional approaches.These strategies aim to modulate the differentiation fate of paraxial mesenchymal stem cells toward myogenic or adipogenic lineages and the interaction between muscle and adipose tissues.These insights would help to improve meat quality while ensuring the growth performance of broiler chickens.展开更多
Paroxysmal kinesigenic dyskinesia(PKD),the most common type of paroxysmal movement disorder,is characterized by sudden and brief attacks of choreoathetosis or dystonia triggered by sudden voluntary movements.PKD is ma...Paroxysmal kinesigenic dyskinesia(PKD),the most common type of paroxysmal movement disorder,is characterized by sudden and brief attacks of choreoathetosis or dystonia triggered by sudden voluntary movements.PKD is mainly caused by mutations in the PRRT2 or TMEM151A gene.The exact pathophysiological mechanisms of PKD remain unclear,although the function of PRRT2 protein has been well characterized in the last decade.Based on abnormal ion channels and disturbed synaptic transmission in the absence of PRRT2,PKD may be channelopathy or synaptopathy,or both.In addition,the cerebellum is regarded as the key pathogenic area.Spreading depolarization in the cerebellum is tightly associated with dyskinetic episodes.Whereas,in PKD,other than the cerebellum,the role of the cerebrum including the cortex and thalamus needs to be further investigated.展开更多
In this editorial,we comment on the article by Marangoni et al,published in the recent issue of the World Journal of Gastroenterology 2023;29:5618-5629,about“Diet as an epigenetic factor in inflammatory bowel disease...In this editorial,we comment on the article by Marangoni et al,published in the recent issue of the World Journal of Gastroenterology 2023;29:5618-5629,about“Diet as an epigenetic factor in inflammatory bowel disease”.The authors emphasized the role of diet,especially the interaction with genetics,in promoting the inflam-matory process in inflammatory bowel disease(IBD)patients,focusing on DNA methylation,histone modifications,and the influence of microRNAs.In this editorial,we explore the interaction between genetics,gut microbiota,and diet,in an only way.Furthermore,we provided dietary recommendations for patients with IBD.The Western diet,characterized by a low fiber content and deficiency the micronutrients,impacts short-chain fatty acids production and may be related to the pathogenesis of IBD.On the other hand,the consumption of the Mediter-ranean diet and dietary fibers are associated with reduced risk of IBD flares,particularly in Crohn’s disease(CD)patients.According to the dietary guidance from the International Organization for the Study of Inflammatory Bowel Diseases(IOIBD),the regular consumption of fruits and vegetables while reducing the consumption of saturated,trans,dairy fat,additives,processed foods rich in maltodextrins,and artificial sweeteners containing sucralose or saccharine is recommended to CD patients.For patients with ulcerative colitis,the IOIBD recommends the increased intake of natural sources of omega-3 fatty acids and follows the same restrictive recommendations aimed at CD patients,with the possible inclusion of red meats.In conclusion,IBD is a complex and hetero-geneous disease,and future studies are needed to elucidate the influence of epigenetics on diet and microbiota in IBD patients.展开更多
Mountains are rich in biodiversity,and butterflies are species-rich and have a good ecological and evolutionary research foundation.This review addresses the potential and progress of studying mountain biodiversity us...Mountains are rich in biodiversity,and butterflies are species-rich and have a good ecological and evolutionary research foundation.This review addresses the potential and progress of studying mountain biodiversity using butterflies as a model.We discuss the uniqueness of mountain ecosystems,factors influencing the distribution of mountain butterflies,representative genetic and evolutionary models in butterfly research,and evolutionary studies of mountain biodiversity involving butterfly genetics and genomics.Finally,we demonstrate the necessity of studying mountain butterflies and propose future perspectives.This review provides insights for studying the biodiversity of mountain butterflies as well as a summary of research methods for reference.展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics(RG)system in the past.Since 2017,multiple plasmid-based RG systems for simian,hu...Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics(RG)system in the past.Since 2017,multiple plasmid-based RG systems for simian,human,and murine-like rotaviruses have been established.However,none of the described methods have supported the recovery of bovine rotaviruses(BRVs).Here,we established an optimized plasmid-based RG system for BRV culture-adapted strain(BRV G10P[15]BLR)and clinical isolates(BRV G6P[1]C73,G10P[11]HM26)based on a BHK-T7 cell clone stably expressing T7 polymerase.Furthermore,using this optimized RG system,we successfully rescued the reporter virus BRV rC73/Zs,rHM26/Zs and rBLR/Zs,harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3(NSP3)fused to ZsGreen,a 232-amino acid green fluorescent protein.Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging,while rHM26/Zs can be stabilized only up to the third generation,indicating that the BRV segment composition may influence the viral fitness.In addition,we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus.In summary,this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.展开更多
The physical mechanism of heredity or inheritance of genes is a quantum mechanical and/or quantum computational process. A theory of bio-quantum genetics is established in this paper. Principle of Bio-quantum Genetics...The physical mechanism of heredity or inheritance of genes is a quantum mechanical and/or quantum computational process. A theory of bio-quantum genetics is established in this paper. Principle of Bio-quantum Genetics is suggested. I propose and define the soft-genes of genetics controlling the processes of heredity or inheritance of genes. This research deals with the quantum mechanisms of Mendel plant heredity and family inheritance as examples of bio-quantum genetics, deepening our understanding of heredity or inheritance. I believe that more contributions will be made to promote researches of bio-quantum genetics or quantum biology at large.展开更多
In the process of teaching medical genetics of undergraduate clinical medicine, the practice and exploration of applying EBM to the bilingual teaching of OSBCM medical genetics are carried out. Using CBL and PBL as th...In the process of teaching medical genetics of undergraduate clinical medicine, the practice and exploration of applying EBM to the bilingual teaching of OSBCM medical genetics are carried out. Using CBL and PBL as the carrier can make up for the shortcomings of a single teaching mode, synthesize the advantages of multiple teaching modes. It starts from integrating the basic theoretical knowledge of medicine and clinical practice knowledge, improving students’ bilingual level of medical genetics, cultivating students’ literature retrieval ability, and promoting early clinical, multi-clinical and repeated clinical consciousness for medical students. Therefore, it is more conducive to cultivate students’ ability to learn independently, accurately analyze and solve problems, improve medical students’ clinical thinking ability and scientific research awareness, improve medical students’ ability of international communication, and lay a solid foundation for improving medical students’ future post competence, innovative spirit and lifelong learning ability.展开更多
Type 1 diabetes(T1D)is an autoimmune disease that usually strikes early in life,but can affect individuals at almost any age.It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancre...Type 1 diabetes(T1D)is an autoimmune disease that usually strikes early in life,but can affect individuals at almost any age.It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancreas.Epidemiological studies estimate a prevalence of 1 in 300 children in the United States with an increasing incidence of 2%-5%annually worldwide.The daily responsibility,clinical management,and vigilance required to maintain blood sugar levels within normal range and avoid acute complications(hypoglycemic episodes and diabetic ketoacidosis)and long term micro-and macro-vascular complications significantly affects quality of life and public health care costs.Given the expansive impact of T1D,research work has accelerated and T1D has been intensively investigated with the focus to better understand,manage and cure this condition.Many advances have been made in the past decades in this regard,but key questions remain as to why certain people develop T1D,but not others,with the glaring example of discordant disease incidence among monozygotic twins.In this review,we discuss the field’s current understanding of its pathophysiology and the role of genetics and environment on the development of T1D.We examine the potential implications of these findings with an emphasis on T1D inheritance patterns,twin studies,and disease prevention.Through a better understanding of this process,interventions can be developed to prevent or halt it at early stages.展开更多
Background Feed efficiency is a crucial economic trait in poultry industry.Both host genetics and gut microbiota influence feed efficiency.How ever,the associations between gut microbiota and host genetics,as well as ...Background Feed efficiency is a crucial economic trait in poultry industry.Both host genetics and gut microbiota influence feed efficiency.How ever,the associations between gut microbiota and host genetics,as well as their combined contributions to feed efficiency in laying hens during the late laying period,remain largely unclear.Methods In total,686 laying hens were used for whole-genome resequencing and liver transcriptome sequencing.16S rRNA gene sequencing was conducted on gut chyme(duodenum,jejunum,ileum,and cecum)and fecal samples from 705 individuals.Bioinformatic analysis was performed by integrating the genome,transcriptome,and microbiome to screen for key genetic variations,genes,and gut microbiota associated with feed efficiency.Results The heritability of feed conversion ratio(FCR)and residual feed intake(RFI)was determined to be 0.28and 0.48,respectively.The ileal and fecal microbiota accounted for 15%and 10%of the FCR variance,while the jejunal,cecal,and fecal microbiota accounted for 20%,11%and 10%of the RFI variance.Through SMR analysis based on summary data from liver eQTL mapping and GWAS,we further identified four protein-coding genes,SUCLA2,TNFSF13B,SERTM1,and MARVELD3,that influence feed efficiency in laying hens.The SUCLA2 and TNFSFI 3B genes were significantly associated with SNP 1:25664581 and SNP rs312433097,respectively.SERTM1 showed significant associations with rs730958360 and 1:33542680 and is a potential causal gene associated with the abundance of Corynebacteriaceae in feces.MARVELD3 was significantly associated with the 1:135348198 and was significantly correlated with the abundance of Enterococcus in ileum.Specifically,a lower abundance of Enterococcus in ileum and a higher abundance of Corynebacteriaceae in feces were associated with better feed efficiency.Conclusions This study confirms that both host genetics and gut microbiota can drive variations in feed efficiency.A small portion of the gut microbiota often interacts with host genes,collectively enhancing feed efficiency.Therefore,targeting both the gut microbiota and host genetic variation by supporting more efficient taxa and selective breeding could improve feed efficiency in laying hens during the late laying period.展开更多
[Objective] The aim was to study the effect of bensulfuron-methyl herbicide on acute toxicity and genetics toxicity of Danio redo. [ Method] Median lethal concentration was calculated by acute toxicity test, and analy...[Objective] The aim was to study the effect of bensulfuron-methyl herbicide on acute toxicity and genetics toxicity of Danio redo. [ Method] Median lethal concentration was calculated by acute toxicity test, and analyzing the herbicide whether existing in potential toxicity to aquatic organisms or not. Based on the study of acute toxicity, genetics toxicity was carried out, by calculating the micronucleus rate to judge bensulfuron-methyl herbicide whether existing in potential toxicity or not. [ Result ] The LD5o (24 h and 48 h) of bensulfuron-methyl herbicide are 0.698 ml/L and 0.637 ml/L respectively, the safe concentration was 0.159 ml/L. The results on the effects of micronucleus (MN) in erythrocytes of Danio redo induced by bensulfuron-methyl at different times and different concentrations showed that the MN rate of control group was 0.010 3%, the highest MN rate of experimental group reached to 0. 372%, it also indicated that bensulfuron-methyl herbicide had genetics toxicity to Danio redo. At the same detection time, there was dose-effect relationship of MN rate in erythrocytes between treatment and control groups with different concentrations. In the same treatment group, the MN rate in erythrocytes reached to peak value at 24 h, and decreased at 48 h and 72 h with the infection time was prolonged. [ Conclusion ] The study provides some basis for scientifically selecting and reasonably using herbicide.展开更多
Type 2 diabetes mellitus(T2DM)is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030.Long-term vascular complications,such as corona...Type 2 diabetes mellitus(T2DM)is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030.Long-term vascular complications,such as coronary artery disease,myocardial infarction,stroke,are the leading causes of morbidity and mortality among diabetic patients.The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases.To date,the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge.In the future,this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients.This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.展开更多
基金supported by the Ministry of Higher Education(MOHE)Malaysia through Fundamental Research Grant Scheme(FRGS)with project code:FRGS/1/2021/STG01/UCSI/01/.SX was funded by the National Natural Science Foundation of China(NSFC)grants 32030020 and 32288101funded by the NSFC grant 32270665.
文摘Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries,supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli.Genetic variants that regulate gene expression,known as expression quantitative trait loci(eQTL),are primarily shaped by human migration history and evolutionary forces,likewise,regulation of gene expression in principle could have been influenced by these events.Therefore,a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped.Recent studies,however,suggest that eQTL is enriched in genes that are selectively constrained.Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations.In addition,such studies are primarily dominated by the major populations of European ancestry,leaving many marginalized populations underrepresented.These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity,which potentially hinders precision medicine.This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective,subsequently discuss their influence on phenomics,as well as challenges and opportunities in the applications to precision medicine.
基金supported by the grants from the National Key Research and Development Program of China(2022YFD1800604)the China Agriculture Research System(CARS-41)the Heilongjiang Touyan Innovation Team Program,China。
文摘Avian metapneumovirus(aMPV),a paramyxovirus,causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.This study established a reverse genetics system for aMPV subtype B LN16-A strain based on T7 RNA polymerase.Full-length cDNA of the LN16-A strain was constructed by assembling 5 cDNA fragments between the T7 promoter and hepatitis delta virus ribozyme.Transfection of this plasmid,along with the supporting plasmids encoding the N,P,M2-1,and L proteins of LN16-A into BSR-T7/5 cells,resulted in the recovery of aMPV subtype B.To identify an effective insertion site,the enhanced green fluorescent protein(EGFP)gene was inserted into different sites of the LN16-A genome to generate recombinant LN16-As.The results showed that the expression levels of EGFP at the site between the G and L genes of LN16-A were significantly higher than those at the other two sites(between the leader and N genes or replacing the SH gene).To verify the availability of the site between G and L for foreign gene expression,the VP2 gene of very virulent infectious bursal disease virus(vvIBDV)was inserted into this site,and recombinant LN16-A(rLN16A-vvVP2)was successfully rescued.Single immunization of specificpathogen-free chickens with rLN16A-vvVP2 induced high levels of neutralizing antibodies and provided 100%protection against the virulent aMPV subtype B and vvIBDV.Establishing a reverse genetics system here provides an important foundation for understanding aMPV pathogenesis and developing novel vector vaccines.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(grant number:NRF-2022R1A2C1092743).
文摘Chronic kidney disease(CKD)affects a significant fraction of the global population and is closely associated with elevated cardiovascular risk and poor clinical outcomes.Its pathophysiology entails complex molecular and cellular disturbances,including reduced nitric oxide bioavailability,persistent low-grade inflammation,oxidative stress,endothelial dysfunction,altered mineral metabolism,genetic predispositions,and uremic toxin accumulation.As current pharmacological treatments provide only partial risk reduction,complementary approaches are imperative.Exercise training,both aerobic and resistance,has emerged as a potent non-pharmacological intervention targeting these underlying molecular pathways.Regular exercise can enhance nitric oxide signaling,improve antioxidant defenses,attenuate inflammation,facilitate endothelial repair via endothelial progenitor cells,and stabilize muscle metabolism.Additionally,accumulating evidence points to a genetic dimension in CKD susceptibility and progression.Variants in genes such as APOL1,PKD1,PKD2,UMOD,and COL4A3–5 shape disease onset and severity,and may modulate response to interventions.Exercise may help buffer these genetic risks by inducing epigenetic changes,improving mitochondrial function,and optimizing crosstalk between muscle,adipose tissue,and the vasculature.This review synthesizes how exercise training can ameliorate key molecular mediators in CKD,emphasizing the interplay with genetic and epigenetic factors.We integrate evidence from clinical and experimental studies,discussing how personalized exercise prescriptions,informed by patients’genetic backgrounds and nutritional strategies(such as adequate protein intake),could enhance outcomes.Although large-scale trials linking molecular adaptations to long-term endpoints are needed,current knowledge strongly supports incorporating exercise as a cornerstone in CKD management to counteract pervasive molecular derangements and leverage genetic insights for individualized care.
文摘2025年3月17日,国际顶级学术期刊《自然·遗传学》(Nature Genetics)刊发题为“Genomic analysis of 1325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement”的研究性论文。该研究由福建省农业科学院茶叶研究所与中国农业科学院农业基因组研究所等多家单位合作完成。本研究通过对茶树及其近缘种的基因组进行深度重测序,构建了全面的茶树基因组遗传变异图谱,进而揭示了茶树的遗传多样性及其驯化状态。其结果为茶树的遗传进化和精准设计育种提供了有益见解以及重要参考资料。
文摘Pediatric inflammatory bowel disease(IBD)is a chronic and heterogeneous disease.IBD is commonly classified into Crohn’s disease and ulcerative colitis.It is linked to serious symptoms and complications.The onset of IBD commonly occurs during adolescence.Despite the significant number of cases globally(~5 million),the causes of pediatric IBD,which constitutes 25%of IBD patients,are not yet fully understood.Apart from environmental factors,genetic factors contribute to a higher risk of developing IBD.The predisposition risk of IBD can be investigated using genetic testing.Genetic mechanisms of pediatric IBD are highly complex which resulted in difficulty in selecting effective treatment or patient management.Genetic variation of IBD would serve as a basis for precision medicine and allow for the discovery of more robust treatment avenues for this condition in pediatric patients.This review aims to discuss the genetics of pediatric IBD,and current development in the screening,diagnosis,and treatment based on genetic profiling of pediatric IBD subjects toward more personalized management of this disease.
文摘Lynch syndrome(LS),also known as hereditary non-polyposis colorectal cancer(HNPCC),is an inherited condition associated with a higher risk of colorectal cancer(CRC)and other cancers.It is caused by germline mutations in DNA mismatch repair(MMR)genes,including MLH1,MSH2,MSH6 and PMS2.These mutations lead to microsatellite instability(MSI)and defective DNA repair mechanisms,resulting in increased cancer risk.Early detection of LS is crucial for effective management and cancer prevention.Endoscopic surveillance,particularly regular colonoscopy,is recommended for individuals with LS to detect CRC at early stages.Additionally,universal screening of CRC for MMR deficiency can help identify at-risk individuals.Genetic counseling plays a valuable role in LS by guiding patients and their families in understanding the genetic basis,making informed decisions regarding surveillance and prevention,and offering reproductive options to reduce the transmission of pathogenic variants of the offspring.The aim of this review is to outline current strategies for the diagnosis,surveillance,and management of LS,with a focus on the role of genetic counseling,endoscopic screening,and emerging therapeutic approaches to mitigate cancer risk in affected individuals.
文摘Information about whether genetic information requires special treatment in law varies around the world and many aspects are not clear.In this study,we draw upon knowledge gained from various disciplines,such as genetics,medicine,law,philosophy,psychology,sociology,anthropology,insurance,and economics,which have all contributed to the study of genetic information,and discrimination based on genetic traits.With this in mind,we are able to set this research study into perspective.We make no claim on behalf of any field of study.Nevertheless,we say the development in the field of genetics is in its infancy and that knowledge of an individual genome would be essential not only for counseling but could also be used for stigmatization and discrimination.The purpose of the study is to help provide useful links concerning legal and ethical issues in human genetics and particularly where it deals with the laws,regulations,and policies concerning genetic information.We deal with the legal and ethical aspects in human genetics that influence genetic information.We examine government policies and the existing legislation in Papua New Guinea(PNG)that deal with genetic information and analyze discrimination cases due to genetic traits and describe its magnitude in PNG.This study places importance on the examination of qualitative data collected by a questionnaire survey from individual subjects representing various organizations in PNG including Department of Health,Insurance companies,General Federation of Employers’Associations,Trade Unions,and professional workers such as lawyers,District Court magistrates,medical doctors,healthcare workers,students,and private individuals.The study was conducted in towns in PNG although the majority of the participants live in the National Capital District.A sample of individuals(patients)were enrolled in a cross-sectional questionnaire survey.Individual information was obtained to describe the situation of the area.However,this study did not use administrative records based on health information from the Department of Health which describes the prevalence of genetically disordered individuals.All selected individuals or subjects were interviewed or completed a questionnaire.The data were assessed to characterize the study subsets.The findings of this study are made available to clinical practice in law,medical and public health,and private and public institutions including insurance companies,employers’federation,mining companies,and workers’unions in PNG,and academics and researchers.Educational programs on the basic principles of genetics,ethics,and law in relation to insurance will have to be developed to improve the knowledge of insurance,medical,and the cost of long-term care.
基金funded by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(Project No.U21A20253)2115 Talent Development Program of China Agricultural University.
文摘Chicken meat quality directly influences consumer acceptability and is crucial for the economic success of the poultry industry.Genetics and nutrition are key determinants of the meat quality traits in broilers.This review summarizes the research advances in this field,with a focus on the genetic and nutritional foundations that regulate intramuscular fat(IMF)deposition and meat quality in chickens over the past decade.The effects of embryonic nutrition,both maternal nutrition and in ovo feeding(IOF),on skeletal muscle development,the IMF content,and meat quality traits in broilers are also discussed.In genetics,single-cell RNA sequencing revealed that de novo lipogenesis predominantly occurs in myocytes,which is key to the formation of IMF in chicken muscle tissue.Fatty acid synthase(FASN)is the key enzyme involved in this process.This discovery has reshaped the traditional understanding of intramuscular lipid metabolism in poultry.Key genes,proteins,and pathways,such as FASN,FABP4,PPARG,C/EBPα,SLC27A1;LPL,APOA1,COL1A1;PPAR and ECM–receptor interactions signaling,have been identified to regulate IMF content and distribution by modulating fatty acid metabolism and adipogenesis.LncHLFF was innovatively found to promote ectopic IMF deposition in chickens via exosome-mediated mechanisms without affecting abdominal fat deposition.MiR-27b-3p and miR-128-3p were found to inhibit adipogenic differentiation by targeting PPARG,thereby affecting IMF formation.In nutrition,nutrigenomics research has shown that fructose enhances IMF deposition by activating ChREBP,providing new targets for nutritional interventions.Adjusting dietary components,including energy,protein,amino acids,fatty acids,and phytochemicals(e.g.,rutin),has been shown to significantly improve meat quality in broilers.Maternal nutrition(e.g.,intake of energy,amino acids,vitamins,and trace elements)and IOF(e.g.,N-carbamylglutamate)have also been confirmed to significantly impact offspring meat quality,opening new avenues for improving embryonic nutrition.Based on these significant advancements,this review proposes strategies that integrate genetic and nutritional approaches.These strategies aim to modulate the differentiation fate of paraxial mesenchymal stem cells toward myogenic or adipogenic lineages and the interaction between muscle and adipose tissues.These insights would help to improve meat quality while ensuring the growth performance of broiler chickens.
基金supported by grants from the National Natural Science Foundation(81330025).
文摘Paroxysmal kinesigenic dyskinesia(PKD),the most common type of paroxysmal movement disorder,is characterized by sudden and brief attacks of choreoathetosis or dystonia triggered by sudden voluntary movements.PKD is mainly caused by mutations in the PRRT2 or TMEM151A gene.The exact pathophysiological mechanisms of PKD remain unclear,although the function of PRRT2 protein has been well characterized in the last decade.Based on abnormal ion channels and disturbed synaptic transmission in the absence of PRRT2,PKD may be channelopathy or synaptopathy,or both.In addition,the cerebellum is regarded as the key pathogenic area.Spreading depolarization in the cerebellum is tightly associated with dyskinetic episodes.Whereas,in PKD,other than the cerebellum,the role of the cerebrum including the cortex and thalamus needs to be further investigated.
文摘In this editorial,we comment on the article by Marangoni et al,published in the recent issue of the World Journal of Gastroenterology 2023;29:5618-5629,about“Diet as an epigenetic factor in inflammatory bowel disease”.The authors emphasized the role of diet,especially the interaction with genetics,in promoting the inflam-matory process in inflammatory bowel disease(IBD)patients,focusing on DNA methylation,histone modifications,and the influence of microRNAs.In this editorial,we explore the interaction between genetics,gut microbiota,and diet,in an only way.Furthermore,we provided dietary recommendations for patients with IBD.The Western diet,characterized by a low fiber content and deficiency the micronutrients,impacts short-chain fatty acids production and may be related to the pathogenesis of IBD.On the other hand,the consumption of the Mediter-ranean diet and dietary fibers are associated with reduced risk of IBD flares,particularly in Crohn’s disease(CD)patients.According to the dietary guidance from the International Organization for the Study of Inflammatory Bowel Diseases(IOIBD),the regular consumption of fruits and vegetables while reducing the consumption of saturated,trans,dairy fat,additives,processed foods rich in maltodextrins,and artificial sweeteners containing sucralose or saccharine is recommended to CD patients.For patients with ulcerative colitis,the IOIBD recommends the increased intake of natural sources of omega-3 fatty acids and follows the same restrictive recommendations aimed at CD patients,with the possible inclusion of red meats.In conclusion,IBD is a complex and hetero-geneous disease,and future studies are needed to elucidate the influence of epigenetics on diet and microbiota in IBD patients.
基金the National Natural Science Foundation of China(32170420 and 31871271)the Beijing Natural Science Foundation(JQ19021)the Peking-Tsinghua Center for Life Science,the State Key Laboratory of Protein and Plant Gene Research,the Qidong-SLS Innovation Fund,Benyuan Charity Young Investigator Exploration Fellowship in Life Science to W.Z.,and grants from the China Postdoctoral Science Foundation(2023M730082 and BX20230026)to S.W.
文摘Mountains are rich in biodiversity,and butterflies are species-rich and have a good ecological and evolutionary research foundation.This review addresses the potential and progress of studying mountain biodiversity using butterflies as a model.We discuss the uniqueness of mountain ecosystems,factors influencing the distribution of mountain butterflies,representative genetic and evolutionary models in butterfly research,and evolutionary studies of mountain biodiversity involving butterfly genetics and genomics.Finally,we demonstrate the necessity of studying mountain butterflies and propose future perspectives.This review provides insights for studying the biodiversity of mountain butterflies as well as a summary of research methods for reference.
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
基金supported by the Heilongjiang Provincial Natural Science Foundation of China(grant no.LH2033C107)the National Key Research and Development Program of China(2023YFD1801302)the Central Public-interest Scientific Institution Basal Research Fund(grant no.1610302022010).
文摘Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics(RG)system in the past.Since 2017,multiple plasmid-based RG systems for simian,human,and murine-like rotaviruses have been established.However,none of the described methods have supported the recovery of bovine rotaviruses(BRVs).Here,we established an optimized plasmid-based RG system for BRV culture-adapted strain(BRV G10P[15]BLR)and clinical isolates(BRV G6P[1]C73,G10P[11]HM26)based on a BHK-T7 cell clone stably expressing T7 polymerase.Furthermore,using this optimized RG system,we successfully rescued the reporter virus BRV rC73/Zs,rHM26/Zs and rBLR/Zs,harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3(NSP3)fused to ZsGreen,a 232-amino acid green fluorescent protein.Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging,while rHM26/Zs can be stabilized only up to the third generation,indicating that the BRV segment composition may influence the viral fitness.In addition,we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus.In summary,this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.
文摘The physical mechanism of heredity or inheritance of genes is a quantum mechanical and/or quantum computational process. A theory of bio-quantum genetics is established in this paper. Principle of Bio-quantum Genetics is suggested. I propose and define the soft-genes of genetics controlling the processes of heredity or inheritance of genes. This research deals with the quantum mechanisms of Mendel plant heredity and family inheritance as examples of bio-quantum genetics, deepening our understanding of heredity or inheritance. I believe that more contributions will be made to promote researches of bio-quantum genetics or quantum biology at large.
文摘In the process of teaching medical genetics of undergraduate clinical medicine, the practice and exploration of applying EBM to the bilingual teaching of OSBCM medical genetics are carried out. Using CBL and PBL as the carrier can make up for the shortcomings of a single teaching mode, synthesize the advantages of multiple teaching modes. It starts from integrating the basic theoretical knowledge of medicine and clinical practice knowledge, improving students’ bilingual level of medical genetics, cultivating students’ literature retrieval ability, and promoting early clinical, multi-clinical and repeated clinical consciousness for medical students. Therefore, it is more conducive to cultivate students’ ability to learn independently, accurately analyze and solve problems, improve medical students’ clinical thinking ability and scientific research awareness, improve medical students’ ability of international communication, and lay a solid foundation for improving medical students’ future post competence, innovative spirit and lifelong learning ability.
文摘Type 1 diabetes(T1D)is an autoimmune disease that usually strikes early in life,but can affect individuals at almost any age.It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancreas.Epidemiological studies estimate a prevalence of 1 in 300 children in the United States with an increasing incidence of 2%-5%annually worldwide.The daily responsibility,clinical management,and vigilance required to maintain blood sugar levels within normal range and avoid acute complications(hypoglycemic episodes and diabetic ketoacidosis)and long term micro-and macro-vascular complications significantly affects quality of life and public health care costs.Given the expansive impact of T1D,research work has accelerated and T1D has been intensively investigated with the focus to better understand,manage and cure this condition.Many advances have been made in the past decades in this regard,but key questions remain as to why certain people develop T1D,but not others,with the glaring example of discordant disease incidence among monozygotic twins.In this review,we discuss the field’s current understanding of its pathophysiology and the role of genetics and environment on the development of T1D.We examine the potential implications of these findings with an emphasis on T1D inheritance patterns,twin studies,and disease prevention.Through a better understanding of this process,interventions can be developed to prevent or halt it at early stages.
基金supported by National Key Research and Development Program of China(2021YFD1300600 and 2022YFF1000204)the National Natural Science Foundation of China(31930105)+1 种基金China Agriculture Research Systems[CARS-40]the 2115 Talent Development Program of China Agricultural University。
文摘Background Feed efficiency is a crucial economic trait in poultry industry.Both host genetics and gut microbiota influence feed efficiency.How ever,the associations between gut microbiota and host genetics,as well as their combined contributions to feed efficiency in laying hens during the late laying period,remain largely unclear.Methods In total,686 laying hens were used for whole-genome resequencing and liver transcriptome sequencing.16S rRNA gene sequencing was conducted on gut chyme(duodenum,jejunum,ileum,and cecum)and fecal samples from 705 individuals.Bioinformatic analysis was performed by integrating the genome,transcriptome,and microbiome to screen for key genetic variations,genes,and gut microbiota associated with feed efficiency.Results The heritability of feed conversion ratio(FCR)and residual feed intake(RFI)was determined to be 0.28and 0.48,respectively.The ileal and fecal microbiota accounted for 15%and 10%of the FCR variance,while the jejunal,cecal,and fecal microbiota accounted for 20%,11%and 10%of the RFI variance.Through SMR analysis based on summary data from liver eQTL mapping and GWAS,we further identified four protein-coding genes,SUCLA2,TNFSF13B,SERTM1,and MARVELD3,that influence feed efficiency in laying hens.The SUCLA2 and TNFSFI 3B genes were significantly associated with SNP 1:25664581 and SNP rs312433097,respectively.SERTM1 showed significant associations with rs730958360 and 1:33542680 and is a potential causal gene associated with the abundance of Corynebacteriaceae in feces.MARVELD3 was significantly associated with the 1:135348198 and was significantly correlated with the abundance of Enterococcus in ileum.Specifically,a lower abundance of Enterococcus in ileum and a higher abundance of Corynebacteriaceae in feces were associated with better feed efficiency.Conclusions This study confirms that both host genetics and gut microbiota can drive variations in feed efficiency.A small portion of the gut microbiota often interacts with host genes,collectively enhancing feed efficiency.Therefore,targeting both the gut microbiota and host genetic variation by supporting more efficient taxa and selective breeding could improve feed efficiency in laying hens during the late laying period.
文摘[Objective] The aim was to study the effect of bensulfuron-methyl herbicide on acute toxicity and genetics toxicity of Danio redo. [ Method] Median lethal concentration was calculated by acute toxicity test, and analyzing the herbicide whether existing in potential toxicity to aquatic organisms or not. Based on the study of acute toxicity, genetics toxicity was carried out, by calculating the micronucleus rate to judge bensulfuron-methyl herbicide whether existing in potential toxicity or not. [ Result ] The LD5o (24 h and 48 h) of bensulfuron-methyl herbicide are 0.698 ml/L and 0.637 ml/L respectively, the safe concentration was 0.159 ml/L. The results on the effects of micronucleus (MN) in erythrocytes of Danio redo induced by bensulfuron-methyl at different times and different concentrations showed that the MN rate of control group was 0.010 3%, the highest MN rate of experimental group reached to 0. 372%, it also indicated that bensulfuron-methyl herbicide had genetics toxicity to Danio redo. At the same detection time, there was dose-effect relationship of MN rate in erythrocytes between treatment and control groups with different concentrations. In the same treatment group, the MN rate in erythrocytes reached to peak value at 24 h, and decreased at 48 h and 72 h with the infection time was prolonged. [ Conclusion ] The study provides some basis for scientifically selecting and reasonably using herbicide.
基金Supported by Ministry of Science and Higher Education of the Russian Federation within the Applied Science Research Program,No.AAAA-A20-120041390028-0Estonia-Russia Cross Border Cooperation Programme 2014-2020,No.ER24.
文摘Type 2 diabetes mellitus(T2DM)is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030.Long-term vascular complications,such as coronary artery disease,myocardial infarction,stroke,are the leading causes of morbidity and mortality among diabetic patients.The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases.To date,the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge.In the future,this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients.This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.